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Motivation

A simple 3-dimensional (3D) Stencil computation can demonstrate that to-
pology aware mapping of objects in a parallel program leads to overall per-
formance improvements. We did a Charm++ implementation of a 7-point 3D
Stencil computation and ran it on Blue Gene/L.
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The 3D data array was divided into cubes and each cube was assigned to one
Charm++ Virtual Processor (VP). The runtime does a default placement of
the VPs. Round-robin and topology-aware mapping schemes were compared
with the default scheme and the results are presented below:

Table I. Performance (time for 100 iterations in secs) on Watson BG/L

VP1: 1 VP per PE VP8: 8 VPs per PE s o

) RR TO RND RR TO F
512 40725 15609 15385 41626 147.18 146.61
1024 27056 9648 8219 29459 101.82 76.80
2048 18145 4974 4211 16194 4643 4024
4096 11556 2561 2127 9327 2489 2365
8192 5344 1067 1081 3259 1141 1134

The round-robin scheme which is implicitly topology aware and beneficial for
the near-neighbor communication of 3D stencil shows performance im-
provements by a factor of 5 over the default scheme. This is also reflected in
the improvements in hop-bytes, which is the sum of the distances traveled
by each message multiplied by their respective sizes. This suggests that the
cause of message delays is congestion or specifically contention for the same
links by different messages.

The topology aware scheme does even better than the round-robin
scheme in most cases. This suggests that topology aware mapping is very im-
portant for good performance, especially for applications where the commu-
nication is not just near-neighbor!

Topology Manager: An API

The Topology Manager APl is an interface we have developed between the
application and the parallel machine. This APl provides information to the
application which is necessary for topology aware task placement at run-
time.

Different functions provided by the API can be grouped into the following
categories:

1. Size and properties of the allocated partition: Used to obtain the dimen-
sions of the allocated partition, number of cores per node and other informa-
tion such as if there are wraparound (torus) links in each dimension.

2. Properties of an individual node: Used to obtain the physical co-ordinates
corresponding to a particular rank and vice-versa.

3. Additional Functionality: Mapping algorithms often need to calculate the
number of hops (links) between two ranks or pick the closest rank to a given
rank. The API provides such utility and other functions which are useful for

mapping.

Currently this APl is useful on supercomputers with 3D torus and mesh
interconnects (such as Cray XT and IBM Blue Gene machines).
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Topology Information on XT and BG machines

Cray XT machines: Obtaining topology information on Cray machines is a two step process:

1. Get the node IDs (nid) for all MPI ranks (pid) through the system calls cnos_get nidpid_map
and PMI_Portals get nidpid map on XT3 and XT4/5 respectively. Node ID is a unique ID for
each physical node.

2. The second step is obtaining the physical coordinates corresponding to a node ID using the
system call rca_get_meshcoord from “rca_lib.h”.

Once we have a mapping of each rank to physical coordinates, the API calculates information
such as the extent of the allocated partition (3D shape assumed).

Blue Gene machines: On Blue Gene/L and Blue Gene/P, this information is available through
system calls to the BGLPersonality and BGPPersonality data structures respectively. The API
makes these calls and stores the information so that the application does not have to make
costly system calls again and again.

The availability of this APl on 3D torus and mesh machines provides a uniform interface to map-
ping algorithms and hence the application does not need to know if it is running on a Blue Gene
or a XT machine.

OpenAtom: A Case Study

OpenAtom is a Charm++ application which does quantum chemistry computations. The applica-
tion is heavily communication-bound and involves several overlapping phases with diverse com-
munication patterns (figure below).

Important communication patterns:
- GSpace, g(state, plane) communicates with PairCalculator, p(state, state, plane) plane-wise
- GSpace, g(state, plane) communicates with RealSpace, r(state, plane) state-wise
- Optimal placement for one pattern hurts the other
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A hybrid mapping which tries to optimize both communication patterns is required.

Mapping Scheme:

- The 3D partition is divided along the longest
dimension into prisms

- All states of one plane of GSpace are assigned
to processors in one prism

- RealSpace objects are mapped close to
GSpace objects. All planes of one state of Real-
Space use the same processors as the corre-
sponding state in GSpace

- All objects in a plane of PairCalculator are
placed on the same processors as the correspond-
ing plane of GSpace

- Density and Ortho objects are placed in close TN,
proximity to the respective RealSpace and PairCal-
culator objects respectively.
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Details: http://charm.cs.uiuc.edu/~bhatele/phd
Further reading: Bhatele and Kale, LSPP "08; LSPP "009.

Bhatele and Kale, Parallel Processing Letters, 18(4):549-566, 2008.
Klein bottle photograph and Background design by David Michael Kunzman
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Performance Results

Topology aware mapping leads to nearly 40% improvement on different
machines: Watson Blue Gene/L, PSC’s XT3 and ANL's Blue Gene/P.

Table Il. Performance (time per step in secs) on Watson BG/L (CO mode)

16

Time (secs/step)

(oo}

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default  Topology Default Topology Default  Topology
Single core per node
512 0.124 0.123 5.90 5.37 4.82 3.86
1024 0.095 0.078 4.08 3.24 2.49 2.02
Two cores per node
256 0.226 0.196 E E - 3
512 0.179 0.161 7.50 6.58 6.28 5.06
1024 0.144 0.114 5.70 4.14 3.51 2.76
2048 0.135 0.095 3.94 2.43 2.90 2.31
WATER 256M 70Ry on Blue Gene/P WATER 256M 70Ry on XT3
Delfault Mapping ° Default Mapping
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4 |- ;3, .
é ..................
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1K 2K 4K 8K 512 1K

WATER 32M 70Ry WATER 256M 70Ry GST BIG

(@] (= Default Topology  Default  Topology Default  Topology
512 0.274 0.259 - - - -
1024 0.189 0.150 19.10 16.4 10.12 8.83
2048 0.219 0.112 13.88 8.14 7.14 6.18
4096 0.167 0.082 9.13 4.83 5.38 3.35
8192 0.129 0.063 4.83 2.75 3.13 1.89
16384 - - 3.40 1.71 1.82 1.20

Table Ill. Performance (time per step in secs) on PSC’s XT3 (Bigben)

No. of cores No. of cores

Reduction in idle time (recorded through Projections) using a better
mapping illustrates that processors spend less time waiting for mes-
sages. Reduction in congestion over the network is demonstrated by the
aggregate bandwidth used, as reported by IBM’s High Performance
Monitor (HPM) library.
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Conclusion

e Topology aware mapping is important to optimize
communication and obtain the best performance
possible.

e Object-based virtualization and the Topology
Manager APl in Charm++ can assist the appli-
cation in mapping.

e Future work: Automatic Mapping Frame-
work to obtain near-optimal mappings
without user intervention.




