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Motivation
A simple 3-dimensional (3D) Stencil computation can demonstrate that to-
pology aware mapping of objects in a parallel program leads to overall per-
formance improvements. We did a Charm++ implementation of a 7-point 3D 
Stencil computation and ran it on Blue Gene/L.

The 3D data array was divided into cubes and each cube was assigned to one 
Charm++  Virtual Processor (VP). The runtime does a default placement of 
the VPs. Round-robin and topology-aware mapping schemes were compared 
with the default scheme and the results are presented below:

The round-robin scheme which is implicitly topology aware and beneficial for 
the near-neighbor communication of 3D stencil shows performance im-
provements by a factor of 5 over the default scheme. This is also reflected in 
the improvements in hop-bytes, which is the sum of the distances traveled 
by each message multiplied by their respective sizes. This suggests that the 
cause of message delays is congestion or specifically contention for the same 
links by different messages.
    The topology aware scheme does even better than the round-robin 
scheme in most cases. This suggests that topology aware mapping is very im-
portant for good performance, especially for applications where the commu-
nication is not just near-neighbor!  

VP1: 1 VP per PE VP8: 8 VPs per PE
Cores RND RR TO RND RR TO

512 407.25 156.09 153.85 416.26 147.18 146.61
1024 270.56 96.48 82.19 294.59 101.82 76.80
2048 181.45 49.74 42.11 161.94 46.43 40.24
4096 115.56 25.61 21.27 93.27 24.89 23.65
8192 53.44 10.67 10.81 32.59 11.41 11.34
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Table I. Performance (time for 100 iterations in secs) on Watson BG/L

Topology Manager: An API
The Topology Manager API is an interface we have developed between the 
application and the parallel machine. This API provides information to the 
application which is necessary for topology aware task placement at run-
time.
    Different functions provided by the API can be grouped into the following 
categories:

1. Size and properties of the allocated partition: Used to obtain the dimen-
sions of the allocated partition, number of cores per node and other informa-
tion such as if there are wraparound (torus) links in each dimension.

2. Properties of an individual node: Used to obtain the physical co-ordinates 
corresponding to a particular rank and vice-versa.

3. Additional Functionality: Mapping algorithms often need to calculate the 
number of hops (links) between two ranks or pick the closest rank to a given 
rank. The API provides such utility and other functions which are useful for 
mapping.

Currently this API is useful on supercomputers with 3D torus and mesh 
interconnects (such as Cray XT and IBM Blue Gene machines). 

Topology Information on XT and BG machines

Cray XT machines: Obtaining topology information on Cray machines is a two step process:

1. Get the node IDs (nid) for all MPI ranks (pid) through the system calls cnos_get_nidpid_map 
and PMI_Portals_get_nidpid_map on XT3 and XT4/5 respectively. Node ID is a unique ID for 
each physical node.

2. The second step is obtaining the physical coordinates corresponding to a node ID using the 
system call rca_get_meshcoord from “rca_lib.h”.

Once we have a mapping of each rank to physical coordinates, the API calculates information 
such as the extent of the allocated partition (3D shape assumed).

Blue Gene machines: On Blue Gene/L and Blue Gene/P, this information is available through 
system calls to the BGLPersonality and BGPPersonality data structures respectively. The API 
makes these calls and stores the information so that the application does not have to make 
costly system calls again and again.

The availability of this API on 3D torus and mesh machines provides a uniform interface to map-
ping algorithms and hence the application does not need to know if it is running on a Blue Gene 
or a XT machine.
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OpenAtom: A Case Study

OpenAtom is a Charm++ application which does quantum chemistry computations. The applica-
tion is heavily communication-bound and involves several overlapping phases with diverse com-
munication patterns (figure below).

Important communication patterns:
    - GSpace, g(state, plane) communicates with PairCalculator, p(state, state, plane) plane-wise
    - GSpace, g(state, plane) communicates with RealSpace, r(state, plane) state-wise
    - Optimal placement for one pattern hurts the other

A hybrid mapping which tries to optimize both communication patterns is required.

Mapping Scheme:
    - The 3D partition is divided along the longest 
dimension into prisms
    - All states of one plane of GSpace are assigned 
to processors in one prism
    - RealSpace objects are mapped close to 
GSpace objects. All planes of one state of Real-
Space use the same processors as the corre-
sponding state in GSpace
    - All objects in a plane of PairCalculator are 
placed on the same processors as the correspond-
ing plane of GSpace
    - Density and Ortho objects are placed in close 
proximity to the respective RealSpace and PairCal-
culator objects respectively.
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WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

512 0.274 0.259 - - - -
1024 0.189 0.150 19.10 16.4 10.12 8.83
2048 0.219 0.112 13.88 8.14 7.14 6.18
4096 0.167 0.082 9.13 4.83 5.38 3.35
8192 0.129 0.063 4.83 2.75 3.13 1.89
16384 - - 3.40 1.71 1.82 1.20

Table II. Performance (time per step in secs) on Watson BG/L (CO mode)

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

Single core per node
512 0.124 0.123 5.90 5.37 4.82 3.86
1024 0.095 0.078 4.08 3.24 2.49 2.02

Two cores per node
256 0.226 0.196 - - - -
512 0.179 0.161 7.50 6.58 6.28 5.06
1024 0.144 0.114 5.70 4.14 3.51 2.76
2048 0.135 0.095 3.94 2.43 2.90 2.31

Table III. Performance (time per step in secs) on PSC’s XT3 (Bigben)
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Performance Results

Topology aware mapping leads to nearly 40% improvement on different 
machines: Watson Blue Gene/L, PSC’s XT3 and ANL’s Blue Gene/P.

Reduction in idle time (recorded through Projections) using a better 
mapping illustrates that processors spend less time waiting for mes-
sages. Reduction in congestion over the network is demonstrated by the 
aggregate bandwidth used, as reported by IBM’s High Performance 
Monitor (HPM) library. 

Conclusion

• Topology aware mapping is important to optimize 
communication and obtain the best performance 
possible.

• Object-based virtualization and the Topology 
Manager API in Charm++ can assist the appli-
cation in mapping.

• Future work: Automatic Mapping Frame-
work to obtain near-optimal mappings 
without user intervention.


