Error Minimizing Minimax
Avoiding Search Pathology in Game Trees

Brandon Wilson, Austin Parker, and Dana Nau

Department of Computer Science
University of Maryland, College Park
Motivation

- Traditionally minimax search proceeds to a limited depth frontier
- Nodes on search frontier are assigned a heuristic evaluation
- Values are propagated to the root to determine a course of action
- Traditional thought dictates that deeper search yields *better* decisions

Search example
Discovered 30 years ago, game-tree pathology is a phenomenon where deeper minimax search reduces decision accuracy. This is counter-intuitive to conventional search wisdom. Games that exhibit this behavior are called pathological games.

Limited work has been done on searching pathological trees. This is because pathology has been thought not to occur in practice.

Our contribution is three-fold:
1. Argue that even non-pathological games can have local pathologies
2. Introduce a method of detecting local pathologies
3. Overcome the negative effects of local pathologies on decision quality
We restrict analysis to binary evaluation functions $[\pm 1]$. Error of the evaluation function is the probability of incorrectly labeling a state (e.g. the evaluation function returns -1 when true value is 1). The error can be propagated based on branch type:

Types of branches (branching factor = 2):

- **Type A - Forced Win**: Win → Win → Win
- **Type B - Critical Node**: Win → Win → Loss
- **Type C - Critical Node**: Win → Win → Loss
- **Type D - Forced Loss**: Win → Loss → Loss
Subtree Pathology

- We restrict analysis to binary evaluation functions $[±1]$
- Error of the evaluation function is the probability of incorrectly labeling a state (e.g. the evaluation function returns -1 when true value is 1)
- The error can be propagated based on branch type:

Types of branches (branching factor = 2):

- **Type A - Forced Win**
 - $p(\text{error}) = e_1 \cdot e_2$
 - $p(\text{error}) = e_1$
 - $p(\text{error}) = e_2$

- **Type B - Critical Node**
 - $p(\text{error}) = e_1 \cdot (1 - e_2)$
 - $p(\text{error}) = e_1$
 - $p(\text{error}) = e_2$

- **Type C - Critical Node**
 - $p(\text{error}) = e_2 \cdot (1 - e_1)$
 - $p(\text{error}) = e_1$
 - $p(\text{error}) = e_2$

- **Type D - Forced Loss**
 - $p(\text{error}) = 1 - (1 - e_1) \cdot (1 - e_2)$
 - $p(\text{error}) = e_1$
 - $p(\text{error}) = e_2$
Aggregating error examples (static evaluation error, $e = 0.15$):

If $e_1 = 0.1$ and $e_2 = 0.1$ then:

\[
 p(\text{error}) = 1 - (1 - e_1) \times (1 - e_2) \\
= 1 - (0.9) \times (0.9) \\
= 0.19
\]

Local Pathology ($0.19 > 0.15$)
Aggregating error examples (static evaluation error, $e = 0.15$):

If $e_1 = 0.1$ and $e_2 = 0.01$ then:

\[
p(\text{error}) = 1 - (1 - e_1) \times (1 - e_2) \\
= 1 - (0.9) \times (0.99) \\
= 0.109
\]

No Local Pathology ($0.109 < 0.15$)
Error Minimizing Minimax (EMM)

General error aggregation:

\[
aggErr(n) = \begin{cases}
 e_1 \cdot e_2 & \text{if type}(n) = A, \\
 e_1 \cdot (1 - e_2) & \text{if type}(n) = B, \\
 (1 - e_1) \cdot e_2 & \text{if type}(n) = C, \\
 1 - (1 - e_1) \cdot (1 - e_2) & \text{if type}(n) = D.
\end{cases}
\]
Error Minimizing Minimax (EMM)

General error aggregation:

\[\text{aggErr}(n) = \begin{cases}
 e_1 \ast e_2 & \text{if type}(n) = A, \\
 e_1 \ast (1 - e_2) & \text{if type}(n) = B, \\
 (1 - e_1) \ast e_2 & \text{if type}(n) = C, \\
 1 - (1 - e_1) \ast (1 - e_2) & \text{if type}(n) = D.
\end{cases} \]

EMM: Propagate both value and probability of error, apply static evaluation when probability of error becomes too high

\[EMM(n) = \begin{cases}
 \text{eval}(n) & \text{if } d = 0, \\
 u(n) & \text{if } n \text{ is terminal,} \\
 \max_{n' \in m(n)} EMM(n') & \text{if p1's move,} \\
 \min_{n' \in m(n)} EMM(n') & \text{if p2's move.}
\end{cases} \]

- Start with traditional minimax, propagating only heuristic values
Error Minimizing Minimax (EMM)

General error aggregation:

\[\text{aggErr}(n) = \begin{cases}
 e_1 \times e_2 & \text{if } \text{type}(n) = A, \\
 e_1 \times (1 - e_2) & \text{if } \text{type}(n) = B, \\
 (1 - e_1) \times e_2 & \text{if } \text{type}(n) = C, \\
 1 - (1 - e_1) \times (1 - e_2) & \text{if } \text{type}(n) = D.
\end{cases} \]

EMM: Propagate both value and probability of error, apply static evaluation when probability of error becomes too high

\[\text{EMM}(n) = \begin{cases}
 \text{eval}(n) \text{ with error } e & \text{if } d = 0, \\
 \text{u}(n) \text{ with error 0.0} & \text{if } n \text{ is terminal}, \\
 \max_{n' \in m(n)} \text{EMM}(n') \text{ with error aggErr}(n) & \text{if p1’s move}, \\
 \min_{n' \in m(n)} \text{EMM}(n') \text{ with error aggErr}(n) & \text{if p2’s move}.
\end{cases} \]

- Start with traditional minimax, propagating only heuristic values
- Then propagate error with the respective heuristic values
Error Minimizing Minimax (EMM)

General error aggregation:

\[
aggErr(n) = \begin{cases}
 e_1 \times e_2 & \text{if type}(n) = A, \\
 e_1 \times (1 - e_2) & \text{if type}(n) = B, \\
 (1 - e_1) \times e_2 & \text{if type}(n) = C, \\
 1 - (1 - e_1) \times (1 - e_2) & \text{if type}(n) = D.
\end{cases}
\]

EMM: Propagate both value and probability of error, apply static evaluation when probability of error becomes too high

\[
EMM(n) = \begin{cases}
 \text{eval}(n) \text{ with error } e & \text{if } d = 0, \\
 \text{u}(n) \text{ with error 0.0} & \text{if } n \text{ is terminal}, \\
 \max_{n' \in m(n)} EMM(n') \text{ with error } aggErr(n) & \text{if p1’s move and } aggErr(n) \leq e, \\
 \text{eval}(n) \text{ with error } e & \text{if p1’s move and } aggErr(n) > e, \\
 \min_{n' \in m(n)} EMM(n') \text{ with error } aggErr(n) & \text{if p2’s move and } aggErr(n) \leq e, \\
 \text{eval}(n) \text{ with error } e & \text{if p2’s move and } aggErr(n) > e.
\end{cases}
\]

- Start with traditional minimax, propagating only heuristic values
- Then propagate \textbf{error} with the respective heuristic values
- Finally, when the aggregate error exceeds the static evaluation \textbf{error}, apply the static evaluation function
Search Example ($e = 10\%$)

Example: Level 3 Search by Minimax

Example: Level 3 Search by EMM
Search Example \((e = 10\%\))

Example: Level 3 Search by Minimax

```
MIN
1 | 1 - (1 - 0.1) \times (1 - 0.1) = 19\%

MAX
1 | e = 10\%

MIN
-1 | (1 - 0.1) \times (0.1) = 9\%

MAX
1 | e = 10\%
```

Example: Level 3 Search by EMM

```
MIN
1 | 1 - (1 - 0.1) \times (1 - 0.1) = 19\%

MAX
1 | e = 10\%

MIN
-1 | (1 - 0.1) \times (0.1) = 9\%

MAX
1 | e = 10\%
```

Greater than the error of the evaluation function (10%)
Search Example \((e = 10\%)\)

Example: Level 3 Search by Minimax

\[
\begin{align*}
\text{MIN} & \quad 1 \left(1 - (1 - 0.1) \cdot (1 - 0.1)\right) = 19\% \\
\text{MAX} & \quad 1 \cdot e = 10\% \\
\text{MAX} & \quad 1 \cdot e = 10\% \\
\text{MIN} & \quad 1 \left(1 - (1 - 0.1) \cdot (0.1)\right) = 19\%
\end{align*}
\]

Example: Level 3 Search by EMM

Better error rate by the direct application of the evaluation function

\[
\begin{align*}
\text{MIN} & \quad 1 \left(1 - (1 - 0.1) \cdot (1 - 0.1)\right) = 19\% \\
\text{MAX} & \quad 1 \cdot e = 10\% \\
\text{MAX} & \quad 1 \cdot e = 10\% \\
\text{MIN} & \quad 1 \left(1 - (1 - 0.1) \cdot (0.1)\right) = 9\%
\end{align*}
\]
Search Example \((e = 10\%)\)

Example: Level 3 Search by Minimax

\[
\begin{align*}
\text{MAX} & \\
1 & (1 - 0.09) \cdot (0.19) = 17.29\%
\end{align*}
\]

\[
\begin{align*}
\text{MIN} & \\
1 & 1 - (1 - 0.1) \cdot (1 - 0.1) = 19\%
\end{align*}
\]

\[
\begin{align*}
\text{MAX} & \\
1 & e = 10\%
\end{align*}
\]

\[
\begin{align*}
\text{MIN} & \\
-1 & (1 - 0.1) \cdot (0.1) = 9\%
\end{align*}
\]

\[
\begin{align*}
\text{MAX} & \\
1 & e = 10\%
\end{align*}
\]

Example: Level 3 Search by EMM

\[
\begin{align*}
\text{MAX} & \\
1 & (1 - 0.09) \cdot (0.1) = 9.1\%
\end{align*}
\]

\[
\begin{align*}
\text{MIN} & \\
1 & e = 10\%
\end{align*}
\]

\[
\begin{align*}
\text{MIN} & \\
-1 & (1 - 0.1) \cdot (0.1) = 9\%
\end{align*}
\]

\[
\begin{align*}
\text{MAX} & \\
1 & e = 10\%
\end{align*}
\]

\[
\begin{align*}
\text{MAX} & \\
-1 & e = 10\%
\end{align*}
\]
Experimental Methodology and Setup

- **Domain:** board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

```
1 0 0 0 0 1 1 1
1 1 1 0 0 1 0 0
0 1 0 1 0 0 1 1
1 1 0 0 0 1 0 0
1 0 1 1 1 0 1 0
1 0 1 0 0 0 1 1
0 1 1 1 1 1 1 0
0 1 1 0 1 0 0 1
```
Board Splitting Game Example

- Domain: board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Initial board:

```
1 0 0 0 0 1 1 1  
1 1 1 0 0 1 0 0    
0 1 0 1 0 0 1 1    
1 1 0 0 0 1 0 0    
1 0 1 1 1 0 1 0    
1 0 1 0 0 0 1 1    
0 1 1 1 1 1 1 0    
0 1 1 0 1 0 0 1    
```
Board Splitting Game Example

- Domain: board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Player 1 splits the board vertically, throwing away half:
Board Splitting Game Example

- **Domain:** board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Player 2 splits the board horizontally, throwing away half:
Domain: board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
- Player 1 splits the board vertically
- Player 2 splits the board horizontally
- The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
- Difference between P-games and N-games is how the initial board is set up (see paper for details)

Player 1 splits the board vertically, throwing away half:
Board Splitting Game Example

- Domain: board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Player 2 splits the board horizontally, throwing away half:
Board Splitting Game Example

- **Domain:** board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Player 1 splits the board vertically, throwing away half:
Board Splitting Game Example

- **Domain:** board-splitting game played on a grid of 1’s and 0’s (called P-games and N-games)
 - Player 1 splits the board vertically
 - Player 2 splits the board horizontally
 - The game ends when only one square remains:
 - If the square is a 1 then the last player to move wins
 - If the square is a 0 then the last player to move loses
 - Difference between P-games and N-games is how the initial board is set up (see paper for details)

- Player 1 wins because player 2 splits horizontally leaving a single 0:
Evaluation Functions

Two binary evaluation functions are examined:

- *Artificial* – given an error rate e, returns the true Minimax value with probability $1 - e$
- *Natural* – a binary approximation to a standard natural evaluation function for the board-splitting
 - Binary evaluation – a board with more wins is evaluated as a win and a board with more losses is evaluated as a loss

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]
P-game Experimental Results (Artificial evaluator, $e = 0.2$)

- EMM is not pathological with either evaluator in P-games (known pathological game for Minimax)
N-game Experimental Results (Artificial evaluator, $e = 0.2$)

- EMM accuracy improves significantly faster than Minimax in N-games.
- Evidence that detecting and accounting for local pathologies in non-pathological games can improve decision accuracy.
Conclusions

- Defined *local pathology* in the context of an individual game tree
- We believe that local pathologies can occur in all interesting games
- Introduced EMM to identify such pathologies and reduce search depth appropriately
- EMM consistently outperformed Minimax
Future Work

- Investigate pruning method similar to alpha-beta
- Extend the EMM algorithm to incorporate non-binary evaluation functions
- Apply EMM to a real game such as chess or checkers