Modeling Social Preferences in Multiplayer Games

Brandon Wilson, Inon Zuckerman, and Dana Nau
{bswilson, inon, nau}@cs.umd.edu

Department of Computer Science
University of Maryland, College Park
Research in multi-player game-tree search significantly behind work on two-player games

“Which algorithm to use?” is still open question for multi-player games

This talk considers games that are:
 - Multi-player (3 or more players)
 - Perfect-information
 - Deterministic
Max^n

- Claude Shannon’s minimax algorithm generalized to n-player games
- Evaluations of leaves are \(n\)-tuples, called evaluation vectors
- Max^n values computed assuming players maximize own payoff
Max\(^n\)

- Claude Shannon’s minimax algorithm generalized to n-player games
- Evaluations of leaves are \(n\)-tuples, called evaluation vectors
- Max\(^n\) values computed assuming players maximize own payoff

Max\(^n\) example

Step 1: Search to limited depth. Apply evaluation function to leaves.
Maxn example

Step 2: Propagate vectors assuming players maximize own payoff

- Claude Shannon’s minimax algorithm generalized to n-player games
- Evaluations of leaves are n-tuples, called evaluation vectors
- Maxn values computed assuming players maximize own payoff
Max

- Claude Shannon’s minimax algorithm generalized to n-player games
- Evaluations of leaves are n-tuples, called evaluation vectors
- Max
values computed assuming players maximize own payoff

Max
example

Step 2: Propagate vectors assuming players maximize own payoff
\(\text{Max}^n \)

- Claude Shannon’s minimax algorithm generalized to n-player games
- Evaluations of leaves are \(n \)-tuples, called evaluation vectors
- \(\text{Max}^n \) values computed assuming players maximize own payoff

Max\(^n\) example

Step 3: Select move leading to best evaluation vector

```
(4,5,1)  
[d]  

2  
[a] (2,4,4) 

2  
[b] (3,5,2) 

2  
[c] (4,5,1) 

3  
3  
3  
3  
3  
3  
```

(2,4,4) (6,3,1) (5,2,2) (3,5,2) (4,5,1) (1,4,5)
Paranoid

- Assumes all players “gang up” on paranoid player
 - Paranoid player maximizes own payoff on his turn
 - Other players minimize Paranoid’s payoff on their turn
Paranoid

- Assumes all players “gang up” on paranoid player
 - Paranoid player maximizes own payoff on his turn
 - Other players minimize Paranoid’s payoff on their turn

Paranoid example
Motivation

- Algorithms seen thus far experience limited success
- Partially due to the presence of dynamic relationships among players
 - Teams form and dissolve over time
 - Human players may hold grudges
- Social relationships part of strategy in some games (e.g., Risk)
- Max\(^n\) and Paranoid make simplifying assumptions:
 - Max\(^n\) assumes all players are selfish
 - Paranoid assumes that all opponents attack the Paranoid player
Motivation

- Algorithms seen thus far experience limited success
- Partially due to the presence of dynamic relationships among players
 - Teams form and dissolve over time
 - Human players may hold grudges
- Social relationships part of strategy in some games (e.g., Risk)
- Max\(^n\) and Paranoid make simplifying assumptions:
 - Max\(^n\) assumes all players are selfish
 - Paranoid assumes that all opponents attack the Paranoid player

Fundamental Question: *How do we describe and reason about these relationships during gameplay?*
Social Orientations

- **Social Orientation** is the how much one cares about one’s own payoff w.r.t. that of others’

![Two-player Social Orientation Spectrum](image)

Two-player Social Orientation Spectrum

- Social orientations can be represented as a matrix
 - Matrix element (i,j) represents how player i feels about player j’s score
 - E.g. $egin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$

 - Player 1 is individualistic
 - Player 2 is aggressive toward Player 1
Max^n and Paranoid Assumptions as Matrices

Social orientations assumed by Max^n and Paranoid are:

- Max^n can be achieved with the identity matrix
 - For each \(i \), player \(i \) cares only about his/her own score (individualist)
 - For example, \(c = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) for a 3-player game

- Paranoid can be achieved with individualist orientation for paranoid player and aggressive orientations for others
 - For each \(i \neq 1 \), player \(i \) wants to minimize player 1’s score
 - For example, \(c = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \) for a 3-player game
Socially Oriented Search (SOS)

- *Socially Oriented Evaluation (SOE)* is the dot-product of a social orientation with an evaluation vector
- Assume players maximize SOE during propagation in game tree

Example SOS Search

\[
\mathbf{c} = \begin{bmatrix}
1 & \frac{1}{2} & 0 \\
\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Experimental Domain: Quoridor

- A four-player game played on a 9×9 grid
- Pawn location for each player is the center of one of the four edges
- Each player has 5 walls that can block a path
- Each turn a player can place a wall or move to an adjacent grid location
- Goal is to reach opposite side first

Quoridor board

Example mid-game board
500 Quoridor games

Two players with random preferences are generated for each game

Games played with two sets of players:
1. \{Max^n, SOS, random_1, random_2\}
2. \{Paranoid, SOS, random_1, random_2\}
Experimental Results (given true social preferences)

SOS consistently outperformed both Paranoid and Max^n
Ad-hoc Heuristic for Learning Social Preferences

- **Problem:** social orientations are not usually explicitly known
- **Goal:** learn social orientations by observing previous behavior
- Estimate the effect of move from state s_1 to state s_2 as:

$$\Delta(s_1, s_2) = eval(s_2) - eval(s_1)$$

- Estimate player’s social orientation as average effect of last k moves.

- Used same experimental setup to test SOS with ad-hoc heuristic
Experimental Results (learned social preferences, $k = 5$)

SOS consistently outperformed both Paranoid and Maxn
Summary

- Introduced an algorithm (SOS) that reasons about social orientations
- Proposed an ad-hoc heuristic for learning social orientations
- Showed empirically that SOS outperforms both Max\(^n\) and Paranoid
Discussion and Future Work

- Comparison against human agents or human-devised agents
- Expand the algorithm to be applicable in more domains:
 - Games with elements of chance
 - Games of incomplete information