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Abstract

TCP Sidecar is a network measurement platform for
injecting probes transparently into externally generated
TCP streams. By coupling measurement probes with non-
measurement traffic, we are able to obtain measurements
behind NATs and firewalls without alerting intrusion de-
tection systems. In this paper, we discuss Sidecar’s design
and our deployment experience on PlanetLab. We present
preliminary results from Sidecar-based tools for RTT esti-
mation (“sideping”) and receiver-side bottleneck location
(“artrat”).

1 Introduction

Internet measurement is key to optimizing performance,
building overlay topologies, developing improved trans-
port protocols, understanding the influence of network
policy, and many other research tasks [4]. Yet the scope
and detail of network measurement is limited more by
the potential for soliciting abuse reports and administra-
tive headache than by the bandwidth required to measure
every interesting property [20]. Traffic designed to mea-
sure the network is often out-of-the-ordinary, interpreted
by intrusion detection systems (IDSs) as anomalous or as
attempts to exploit unknown vulnerabilities. To make a
network measurement “safe,” not just for the network but
also to avoid abuse reports, requires techniques beyond
those of Scriptroute [21]: it requires a fundamental shift in
the design of network measurement probes and responses.

We present a measurement platform for reduced in-
trusiveness called TCP Sidecar. Sidecar’s main in-
sight is that soliciting abuse reports and triggering IDSs
can be avoided by injecting carefully-crafted probes
into externally-generated, non-intrusive network traffic.
Where typical measurement tools select which hosts to
probe and in what order, Sidecar does not control the
source, destination, or the exact time of the measurement.
Much like a sidecar attaches to a motorcycle, TCP Side-
car attaches to a TCP connection and is just “along for
the ride.” The Sidecar is also a container: it can carry
various measurement techniques for discovering different
network properties.
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Figure 1: Sidecar is a platform for unobtrusive measure-
ments that provides an event-driven interface and connec-
tion tracking to higher-level tools, e.g., artrat, sideping.

In this paper, we describe Sidecar-based topology in-
ference, round-trip time measurement, and bottleneck lo-
cation. We show how Sidecar obtains measurements,
through network address translators (NATs) and firewalls,
unavailable to traditional measurement techniques. Also,
we describe our experience with Sidecar on PlanetLab.
In a complementary paper, we describe Passenger [17], a
Sidecar-based tool that makes use of the IP record route
option for topology discovery.

This paper is organized as follows. In Section 2, we de-
scribe the Sidecar platform and API. We present our expe-
rience from running Sidecar on PlanetLab in Section 3 and
two examples of Sidecar-based tools in Section 4. Last,
we describe our plans for future work in Section 5.

2 Sidecar Design
Sidecar (Figure 1) is a platform that supports transparently
injecting measurement into TCP streams. Probes consist
of acknowledgments and replayed data segments, care-
fully crafted not to interfere with the ongoing TCP con-
nection. Sidecar requires no modification to end-points,
requires no firewall rules (unlike Sting [16]), and can run
at either end-point of a stream or even in a network mid-
dle box. Sidecar’s only requirement is that it be on both
the forward and reverse paths of a connection. Sidecar
probes require an external source of TCP traffic, but the
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Figure 2: Sender incorrectly assumes (shaded region) that
duplicate ACKs are from delayed, reordered, or dupli-
cated packets.

characteristics of the application being instrumented mat-
ter little.

2.1 Unobtrusive Probing
Sidecar probes are TCP packets that look like retrans-
mitted data. Upon receiving retransmitted data, TCP re-
ceivers send a duplicate ACK because the original ACK
could have been lost (Figure 3). TCP senders ignore
single duplicate ACKs because they could be caused by
delays (Figure 2) or reordering in the network. Sidecar
records application data passively so that segments can be
retransmitted accurately (Figure 4).1 Because packet loss
and duplication are expected in TCP, IDSs are unlikely to
generate alerts from Sidecar probes. Thus, Sidecar probes
solicit responses from end-hosts without affecting appli-
cations or alerting IDSs.

Because Sidecar probes seamlessly attach and follow
application streams, they can reach places unsolicited
probes cannot. For example, if a Sidecar-enabled tool in-
strumented web server traffic, Sidecar probes could fol-
low web connections from the server back to the corre-
sponding web clients, even if they were behind firewalls
or NATs.

The size of the probe can be varied by changing the
amount of traffic replayed, only limited by the connection
MTU and the amount of data recorded. Probes can be sent
even after the connection has closed by replaying the final
FIN-ACK packet, as long as the receiver is in the TIME-
WAIT state. The last is possible because the final ACK of
the three-way close might have been lost, so replaying the
FIN-ACK causes a retransmission of the final ACK.

Typically, a Sidecar-enabled tool would further mod-
ify probes. For example, one could implement a Sidecar
traceroute-like [8] topology discovery tool by setting the
IP TTL field of the Sidecar probe to 1, and then incre-
menting until an ACK was received from the end-host.
With Sidecar running on a web server, this tool would

1Paxson [12] notes that retransmitted data can change the data stream
sent if the original and retransmitted data are not consistent.
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Figure 3: Receiver incorrectly assumes (shaded region)
that probes are valid retransmissions from sender due to
lost ACK.
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Figure 4: Reality: Sidecar probes are replayed data packet
that generate duplicate ACKs. Probes are transparent to
both sender and receiver applications.

obtain the path back to any client without out-of-stream
packets.2

TTL-limited Sidecar probes can also detect NATs. If a
probe is sent to IP addressA at TTL=t, but the response
is an ICMP time-exceeded message with source address
A, we can infer that there is a NAT at hopt. We can then
continue to increase the TTL to find the actual distance to
the end-host, effectively probing behind the NAT. Passen-
ger [17] is a Sidecar-enabled topology discovery tool that
combines TTL-limited traceroute data with data from the
IP record route option. We present two further examples
of Sidecar tools in the Section 4.

2.2 Sidecar API
The Sidecar API (Figure 1) provides connection tracking,
probe identification, round trip time estimation as well as
bandwidth and memory usage limits. The Sidecar tools
are event-driven applications that receive event notifica-
tions such as new connections, incoming and outgoing
probes. The Sidecar initialization function takes a libp-
cap [9] filter string, e.g., “host www.google.com and port
80”, as a parameter, and ignores events that do not match
the filter. To construct packets for retransmissions, Side-
car tracks state for each connection, including sequence

2Discovering the topology between server and web clients is pre-
cisely the measurement by Padmanabhanet al. [11].
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numbers and the last 3000 bytes (two full standard Ether-
net packets) of application data in both directions. Sidecar
automatically matches probes to their sent and received
libpcap timestamps for increased accuracy over gettime-
ofday() [19]. Sidecar differentiates probes from legitimate
traffic by changing the probe’s IP identifier field.

3 Sidecar on PlanetLab
In this section, we discuss the lessons learned by running
Sidecar on PlanetLab. We divide these lessons into two
categories: problems we expected that turned out to be
non-issues, and problems we did not expect.

3.1 Non-Issues
No abuse complaints from embedded probes.We run
a Sidecar-based topology discovery tool, Passenger [17],
for seven days on all traffic generated by the CoDeeN [22]
web-proxy project. CoDeeN is a content distribution net-
work hosted on PlanetLab that supports approximately 1
millions requests per day [3]. Of the 13,447,011 unique
IP addresses, we ran a Sidecar based traceroute scan back
to each client, using the algorithm described in Section 2.
No abuse reports were generated from our probes.

PlanetLab VNET worked with Sidecar. PlanetLab
implements a connection tracking and traffic isolation sys-
tem called VNET [7] to prevent researchers from inter-
fering with each other. With VNET, all connections are
owned by a specific slice, and slices can only read and
write raw packets that come from connections that they
own. It was not immediately clear that Sidecar would
be compatible with VNET, because Sidecar assumes that
processes in the same slice can write to each other’s con-
nections and slices can write packets to sockets after they
have gone to the timewait state. It is a measure of the suc-
cess of the VNET design that it was able to accommodate
Sidecar.

3.2 Unanticipated Issues
Clocks changed and went back-in-time. PlanetLab
machines run on a variety of hardware and loads, causing
variable clocks and inconsistent measurements. As part
of our future work, we are adding a periodic sanity check
to Sidecar to compare the elapsed time to the elapsed pro-
cessor cycles as returned by theRDTSCinstruction. In
this way, Sidecar can notify a Sidecar tool that significant
clock skew has occurred, and to adapt accordingly, poten-
tially discarding timing data.

Libpcap on PlanetLab drops and reorders packets.
Packets drops and reordering occur more frequently on
PlanetLab than our development machines. Particularly
problematic was that the final ACK of the three-way-
handshake would appear before the SYN-ACK packet. As

a result, Sidecar’s connection tracking had to be rewritten
to be more resilient to these issues.

Firewalls unset DF. In an attempt to reduce the number
of packets traversing libpcap, we decided to mark probe
packets for which the sent timestamp was unimportant
(those that are merely payload intended to cause delay, as
in RPT [6]) to separate them from important traffic in the
libpcap filter. We marked uninteresting packets by unset-
ting the Don’t Fragment (DF) bit in the IP header, and ad-
justed our libpcap filter appropriately However, firewalls
around some PlanetLab nodes unset the DF bit on incom-
ing packets, foiling our scheme.

IO system calls occasionally took seconds.We saw in-
termittent multi-second delays when running Sidecar. Us-
ing strace -T, we found that some open() and write() sys-
tem calls would take seconds to complete. Because the
problem was intermittent, we could not isolate the cause.

PlanetLab web servers don’t implement persistent
connections. RedHat Fedora Core 2, PlanetLab’s base
distribution, ships with persistent web connections dis-
abled, despite RFC2616’s recommendation that they
should be enabled. Many of the results in Section 4
used connections from one PlanetLab machine to the web
server of another PlanetLab machine as the source of ex-
ternal traffic. The lack of persistent connections short-
ened connection time so the majority of PlanetLab-to-
PlanetLab measurements relied on the post-connection
FIN-ACK Sidecar probes as described above.

Sidecar required resource limits Because Sidecar
probes are triggered in response to external traffic, and
the rate of external traffic is not under Sidecar’s control, it
quickly became necessary to implement resource meter-
ing. Sidecar implements an internal rate limiting scheme
on all outgoing probes and monitors the size of the out-
going queue. If the queue size exceeds a threshold value,
Sidecar ignores new connections until the queue falls be-
low the threshold. In this way, Sidecar tools need not be
exposed to the underlying details of the connection track-
ing, traffic bursts, or rate limiting.

Generate artificial traffic carefully Sidecar is unob-
trusive because it attaches to pre-existing traffic sources.
However, for testing or probing specific portions of the
network, it is sometimes useful to artificially generate a
seemingly legitimate traffic source for Sidecar. In one ex-
periment [17], we created a custom web client to visit a
list of 160,000 websites from each PlanetLab node and
mimic the presumed innocuous behavior of a web crawler.
For each web server, the custom web client connected and
performed a full HTTP session while Sidecar attached to
the traffic stream to send Sidecar probes.
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Figure 5: Sideping RTT measurements from UMD to two
ICMP echo filtered PlanetLab nodes.

This experiment generated ten abuse reports, but sur-
prisingly from the web traffic, not the Sidecar probes. The
reports were not triggered by automated intrusion detec-
tion systems, but apparently by administrators noting the
similarity of PlanetLab machine names after manual in-
spection of HTTP access logs entries. We failed to an-
ticipate the prevalence of virtual hosting and the need to
randomize the list of websites. The first caused individual
clients to query a single server repeatedly, increasing the
number of log entries, and the second caused PlanetLab
clients to accidentally synchronize and query the same
server simultaneously, decreasing the time between log
entries. These issues were exacerbated due to a coding er-
ror where theUser-agentstring in the HTTP requests had
been reset to a default “Mozilla”-like string. We believe
that if the correct User-agent string had been in place, i.e.,
one pointing to an explanatory web page with contact in-
formation, fewer abuse reports would have been directed
to PlanetLab.

We plan to explore new less intrusive, artificial traffic
generation techniques for future Sidecar experiments.

4 Sidecar Tools
We present two examples of reduced intrusiveness
Sidecar-based tools that suggest the generality of the plat-
form. The first tool, sideping, provides accurate round trip
measurements with increased accuracy. The second tool,
artrat, performs bottleneck location at the receiving end of
a connection. As Sidecar modules, both require a separate
source of connections, though we use a driver that cre-
ates new connections on demand for debugging. In other
work, we describe Passenger [17], a Sidecar-enabled tool
that combines traceroute probes with the record route IP
option for topology discovery.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10  12  14  16  18  20

CD
F

RTT (ms)

ICMP Echo
scping

Figure 6: Sideping RTTs vs ICMP Echo: Difference ex-
poses NAT + wireless network.

4.1 sideping: Round Trip Time Estimator
Sideping estimates network latency by measuring the
round trip time of Sidecar probes in a TCP connection.
Although latency is an unsophisticated measurement, the
extensive use of the all-pairs PlanetLab ping [13] data set
demonstrates its importance.

Sideping seeks to avoid over- and underestimation of
round trip times. Tools like ping can overestimate RTTs
because they assume that the probe’s sent time is close
to the sendmsg() call. By contrast, Sidecar records the
timestamp from libpcap for the time the probe was given
to the network interface device. Rate limiting means that
the probe can reach the interface well after the application
asked it to be sent. Ping can also underestimate RTT when
probing a host behind a NAT. Because sideping can fol-
low TCP connections to their end-points, researchers can
gain insight into network dynamics behind NATs. Com-
pared to TCP’s internal RTT estimation protocol, sideping
does not inflate RTTs by including delayed ACK time.

Figure 5 shows sideping collecting previously-
unavailable RTT measurements from two PlanetLab
nodes that filter ICMP echo packets. Figure 6 shows
the difference between ICMP echo and sideping RTT
measurements traversing a NAT to a wireless network.
The ICMP echo reply packets return with a larger TTL
than the sideping responses. The difference between the
two techniques, 0.797 ms on average, is extra delay from
the wireless network.

4.2 artrat: Receiver-side bottleneck detection
Artrat3 is a Sidecar-based tool that attempts to locate lo-
cal bottlenecks, from the receiver’s perspective. This in-
formation could be used to decide whether local network
resources were sufficiently-provisioned or if they should
be upgraded. Although tools [1, 6] exist to perform bot-

3Artrat: Active Receiver TCP Rate Analysis Tool
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tleneck location by instrumenting the sender, we believe
we are the first to focus on the perspective of the receiver.
We believe that this tool will be of use to PlanetLab re-
searchers who are concerned with local bandwidth condi-
tions during their experiments.

Artrat correlates the congestion delay in the connection
with the queuing delay at local routers. Sidecar reports
any router whose queuing delay correlates over time with
the congestion delay as a suspected bottleneck. Similar
to TCP Vegas [2], we measure the congestion delay as
the difference between the current RTT and the baseline
(minimum) RTT.

To measure the queuing delay at routers, artrat first dis-
covers the router,a, five hops4 into the network using a
TTL limited probe. Then, artrat periodically sends ICMP
echo probes with the IP timestamp option [14] to routera,
and parses the response (Figure 7). The IP timestamp op-
tion records the time at each router in milliseconds and (by
RFC792) the ICMP echo response packet has the same
options payload as the echo request. In this way, artrat
learns the local time of each router along the outgoing
path toa, and, most importantly, of each router on the
path froma back to the receiver. Similar to our definition
of congestion delay above, we define the queuing delay
between two routers as difference between the current jit-
ter and the minimum observed jitter. If we label the IP op-
tion timestamps for thejth probe asS1,j . . . S9,j and call
S0,j andS10,j the send and received times for the ICMP
probej, we can calculate the queuing delay,qi,j , between
routeri andi + 1 as computed by thejth probe as:

qi,j = Si+1,j − Si,j − mink(Si+1,k − Si,k)

Then we compute the correlation between the conges-
tion delay andqi,j for all routersi, and output thei→ i+1
link with the highest correlation as the likely bottleneck.

We ran artrat on a local network testbed to test the
scheme. The testbed consisted of a client connected with
a 10Mbps Ethernet card to a 100Mbps network. We ran
artrat while the network was idle (Figure 8) and while
downloading a 20MB file (Figure 9). When the network
was idle, artrat found no significant queuing delay. While
the network was in use, artrat successfully found queuing
delay on the inbound portion of the 10Mbps link (labeled
“1→ R” in Figure 9).

The coefficient of correlation between the congestion
delay and routing delay at router 1 in Figure 9 is 0.24. Al-
though this is low, the second highest coefficient of corre-
lation was 0.072, so artrat successfully found the 10Mbps

4 Fivehops into the network was chosen because the IP header limits
the number of recorded timestamps to nine. If the local path is symmet-
ric, five hops is the maximum distance the probe can travel away from
the receiver so that the return path does not exhaust the IP option array.
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Figure 7: Overview: Artrat correlates congestion and
queuing delays to do receiver-side bottleneck location (ex-
ample: bottleneck from S to R at TTL=2).

link as the bottleneck. This correlation analysis simply
compared theith ICMP probe with theith Sidecar probe,
ignoring timing information and dropped probes. Imple-
menting robust time-series analysis techniques is future
work, but the technique shows promise.

Artrat makes two assumptions that must be validated
before use. First, due to the baseline measurements, this
technique is sensitive to clock skew, both locally and at
routers. Thus, artrat must periodically compare the time
elapsed on all clocks against some external source, like
theRDTSCinstruction or a remote NTP server, using the
techniques of Moonet al. [10]. Second, artrat requires
some symmetry in local routing. Specifically, artrat can
only discover bottlenecks on the path of the returning
ICMP probe. It is the subject of future work to integrate
artrat with topology-aware tools to verify the symmetric
nearby network assumption (perhaps using remote tracer-
oute servers as in Rocketfuel [18] or another service).

While one could create a version of non-Sidecar en-
abled artrat, the Sidecar version benefits from increased
accuracy in RTT measurements (Section 4.1) and already
written connection tracking libraries.

5 Conclusion and Future Work
TCP Sidecar provides a platform for non-intrusive net-
work measurements by injecting probes into external
sources of traffic. One potential source of external traffic
is PlanetLab, which supports many high volume, publicly
accessible services, e.g., CoDeeN [22], OpenDHT [15],
Meridian [23], and CoralCDN [5]. Many of these services
perform their own measurements, and might benefit from
less intrusive Sidecar-based approaches. This creates an
interesting symbiotic relationship between measurement
studies and PlanetLab hosted services.

In our future work, we plan to complete a large-scale
Sidecar-based measurement study. Our current work is
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Figure 9: Artrat Experiment: Data Transfer: bottleneck at
1→R, i.e., 10Mbps link. (Data labels as in Figure 8)

in concert with the CoDeeN project, but we plan to ex-
pand to other PlanetLab services to avoid host selection
bias. We also plan to better document the Sidecar API so
that other researchers might benefit from our work. Side-
car is available for download at http://www.cs.umd.edu/
projects/sidecar.
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