Diffusion Centrality

Chanhyun Kang
Motivation

• Social network influence analysis has received considerable attention

• Much research on how various diffusive properties (behaviors) spread through the networks

• Various diffusion models developed in various areas
 – Obviously, diffusion processes are different according to each diffusive property (behavior)

• Question!

Can we measure the influence of a vertex in a social network with respect to a given diffusion model?
Motivation

How to measure the influence of a vertex in a social network with respect to a given diffusion model?

• Centrality is widely used in social network analysis.
 – Ex. Degree, Eigenvector, Betweenness, Stress, Closeness and so on

• No centrality measures consider semantic aspects of networks
 – Does a man who doesn't have a baby have interest about a diaper complain article on Facebook and try to share it with friends? (vertex property: having a baby or not)
 – Do students recommend a latest fashion hat to their professors? (edge property: friend, supervisor, coworker and so on)

• No centrality measures consider diffusion processes explicitly
 – Information propagation and disease infection processes are different.
 – There are no centrality measures appropriate for infection and gossip processes ... Existing centrality measures are only valid for specific flow processes that they assume only *

* “Centrality and network flow” by Stephen P. Borgatti, Social Networks, 2005
Motivation

• We suggest a new notion of Diffusion Centrality to quantify the influence of vertices in a social network with respect to
 – A given diffusion model that explains how a diffusive property spreads in the network
 – The structural properties of the network
 – The semantic properties of the network
Motivation example

Organization O has historical data on the spread of some phenomenon \(p \) in a SN. They have identified a diffusion model for \(p \). They want to assign a score to each user \(u \) expressing how important user \(u \) is in diffusing the phenomenon \(p \).
Motivation example

The computed centrality measures of vertices

Betweenness

Closeness

Eigenvector

Degree
Motivation example

The expected number of infected vertices using top-3 vertices

Betweenness

Closeness

Eigenvector

Degree
Motivation example

When we used top-3 diffusion centrality vertices,
Quality of diffusion

<table>
<thead>
<tr>
<th>Measures</th>
<th>Top 1 person</th>
<th>Top 2 persons</th>
<th>Top 3 persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion Centrality</td>
<td>5.69</td>
<td>11.03</td>
<td>11.59</td>
</tr>
<tr>
<td>Eigenvector Centrality</td>
<td>5.34</td>
<td>6.34</td>
<td>7.34</td>
</tr>
<tr>
<td>Degree Centrality</td>
<td>1.964</td>
<td>3.264</td>
<td>7.99</td>
</tr>
<tr>
<td>Closeness Centrality</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Betweenness centrality</td>
<td>1</td>
<td>2.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Diffusion Model: Syntax

• Set of condition probability statements such as:

 i. \[P(\text{REC}(X) \mid \text{friend}(Y, X, W) \land W=1 \land \text{REC}(Y)>0 \land \text{SEX}(Y)=\text{SEX}(X) \land \text{LIKE}_\text{RUNNING}(Y) \land \text{LIKE}_\text{RUNNING}(X)) = 0.8 \times \text{REC}(Y). \]

 If Y is a friend of X with weight 1, the probability that Y recommends the product exceeds 0, X and Y are of the same sex and both X,Y like running, then the probability that X will recommend the product is 80% that of Y.

 REC(X) : recommendation probability for a product, a diffusive property

 ii. \[P(\text{REC}(X) \mid \text{friend}(Y, X, W) \land W=1 \land \text{REC}(Y)>0 \land \text{SEX}(Y) \neq \text{SEX}(X) \land \text{LIKE}_\text{RUNNING}(Y) \land \text{LIKE}_\text{RUNNING}(X)) = 0.5 \times \text{REC}(Y) \]

 iii. \[P(\text{REC}(X) \mid \text{friend}(Y, X, W) \land W=1 \land \text{REC}(Y)>0 \land \text{SEX}(Y)=\text{SEX}(X) \land \text{LIKE}_\text{RUNNING}(X)) = 0.2 \times \text{REC}(Y) \]

 Diffusion models can be readily learned from historical data using standard learning algorithms.
Diffusion Fixpoint Operator

- ℓ is a “labeling” assigning a probability that a vertex v has diffusive property p.
- $T_{S,D}(\ell)(v)$ is the probability that vertex v has diffusive property p after applying all rules in diffusion model D once.

$$T_{S,D}(\ell)(v) = \max(\{\ell(v)\} \cup \{c \times \prod_{p(v') \in \text{body}(r)} \ell(v') \mid \exists r \in \text{grd}(D) \text{ s.t. } r \text{ is enable and of the form } P(p(v) | A_1 \land \cdots \land A_n) = c\})$$

After applying all rules of D for v once,

$$p(v_1) = \max\{p(v_1), p(v_1)xc_1, p(v_2)xc_2, p(v_3)x p(v_4)xc_3\}$$

We assume the probabilities are independent!
Diffusion Fixpoint Operator

• If we apply $T_{S,D}$ for all vertices once, we can get the probabilities that vertices have diffusive property p after first contagion process.

• We keep applying $T_{S,D}$ for all vertices continuously until no changes of probabilities occur.

• Sum of probabilities at the stable state is the expected number of infected vertices in social network S w.r.t. diffusion model D.

Can we ensure that we can reach the stable state?
Diffusion Fixpoint Operator

- ℓ is a "labeling" assigning a probability that a vertex v has diffusive property p.
- $T_{S,D}(\ell)(v)$ is the probability that vertex v has diffusive property p after applying all rules in diffusion model D once.

\[
T_{S,D}(\ell)(v) = \max\{\ell(v)\} \cup \{c \times \prod_{p(v') \in \text{body}(r)} \ell(v') \mid \exists r \in \text{grd}(D) \text{ s.t. } r \text{ is enable and of the form } P(p(v)|A_1 \land \cdots \land A_n) = c\}
\]

- **Theorem:** $T_{S,D}$ is a monotonic operator that has a least fixpoint, $\text{lfp}(T_{S,D})$
- **Theorem:** $\text{lfp}(T_{S,D})$ can be obtained by
 - Starting with the labeling that assigns 0 to all vertices (except for those originally labeled as having diffusive property p).
 - Applying the $T_{S,D}$ operator till no change occurs.
Section Outline

• Motivation: Classical centrality measures fall short
• Diffusion Model
 – Syntax
 – Fixpoint Operator
• **Diffusion Centrality (DC) Definition**
• Hypergraph-based DC Computation Algorithm
• Experimental Results
• Conclusion
Diffusion Centrality Definition

- Diffusion Centrality $dc(v)$ of vertex v is obtained as follows:
 - Compute expected number of infected vertices if v has diffusive property p;
 - Compute expected number of infected vertices if v does NOT have diffusive property p;
 - Take the difference.

$$dc(v) = \sum_{v' \in V - \{v\}} lfp(T_{S \oplus p, D})(v') - \sum_{v'' \in V - \{v\}} lfp(T_{S \ominus p, D})(v'')$$
DC Computation: Key Insight, I

- Let $F = \text{lfp}(T_{S,D})$. If we pre-compute F, then to compute $dc(v)$, we only need to compute one of the two fixpoints.
 - If vertex v originally had diffusive property p, then:
 \[
 dc(v) = \sum_{v' \in V - \{v\}} F(v') - \sum_{v' \in V - \{v\}} \text{lfp}(T_{S \oplus p, D})(v'')
 \]
 - If vertex v originally didn’t have diffusive property p:
 \[
 dc(v) = \sum_{v' \in V - \{v\}} \text{lfp}(T_{S \oplus p, D})(v') - \sum_{v' \in V - \{v\}} F(T_{S \oplus p, D})(v'')
 \]

of lfp computations to compute diffusion centrality of all vertices is $n+1$ (not $2n$), where $n = |V|$
DC Computation: Key Insight, II

- We can eliminate a bunch of rules.
- All instantiated diffusion rules have $p(-)$ in the head.
- If $q(x)$ occurs in the rule body and $q \neq p$ and vertex x does not have property q, then get rid of the rule.
- If $e(x,y,w)$ occurs in the rule body and edge(x,y) does not have the desired weight, then get rid of the rule.
- Otherwise, get rid of all non-p atoms in the rule body.

If rule instances (except diffusive property p in body) are not satisfiable in S, the rules will never be satisfied in lfp computation. Let’s remove the rule instances.
DC Computation: Key Insight, III

• From the remaining rule instances, we can create a hypergraph H
 – Hyperedge $h: (S, t)$ draws an arc from a set of vertices to a vertex. The weight is the probability of the rule instance.
 – Source S: All vertices of the form $p()$ in the rule body.
 – Target t: The rule head.

• lfp computation can be computed by applying hyperedges in descending order of edge weights.
 – Larger probabilities are assigned to vertices first.
 – Our lfp computation ensures that the assigning is once for each vertex.

• Our HyperDC() algorithm finds all vertices with DC exceeding a threshold τ. We incorporate a set of methods to prune based on τ.

• Complexity of HyperDC() : $O(|N| + |H| \cdot (\log |H| + u_{\text{max}} \cdot S_{\text{max}}))$

 where $u_{\text{max}} = \max_{v \in V}||\{ h \mid h \in H \land v \in S(h) \}||$ and $S_{\text{max}} = \max_{h \in H}||S(h)||$
Experiments

• YouTube data with diffusion model for joining specific YouTube groups. (Users originally have a group and have ‘friend’ relationships)

• Diffusion model: \(P(g(Y) \mid \text{friend}(Y,X) \& g(X)>0 \& q(X)) = \rho \times g(X) \)
 – If \(X \) is a member of \(g \), \(X \) is a friend of \(Y \) and \(X \) has property \(q \), then \(Y \) is a member of \(g \) with probability \(\rho \). (*Flickr model*)
 – We randomly selected a group \(g \) as a diffusive property for each run

• Varied size of networks in YouTube data
 – From 20K to 100K vertices in steps of 20K.
 – From 100K to 1M vertices in steps of 100K.

• Ran on Intel Xeon@2.40 GHz, 24 GB RAM

Only a snapshot of our experimental results are listed here.

“A measurement-driven analysis of information propagation in the flickr social network”, Meeyoung Cha et al, 2009
Running Time (in milliseconds)

- The average time for one vertex when 2.5%* of vertices have property q
 (In Flickr influence analysis research*, vertices infected 1-2% of their neighbors)

<table>
<thead>
<tr>
<th>Number of vertices in the SN</th>
<th>20K</th>
<th>40K</th>
<th>60K</th>
<th>80K</th>
<th>100K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree</td>
<td>0.03</td>
<td>0.07</td>
<td>0.11</td>
<td>0.14</td>
<td>0.31</td>
</tr>
<tr>
<td>Eigenvector</td>
<td>0.42</td>
<td>0.43</td>
<td>0.60</td>
<td>0.68</td>
<td>0.91</td>
</tr>
<tr>
<td>Diffusion</td>
<td>8.71</td>
<td>17.77</td>
<td>29.36</td>
<td>44.20</td>
<td>53.08</td>
</tr>
<tr>
<td>Betweenness</td>
<td>88.80</td>
<td>231.57</td>
<td>424.52</td>
<td>581.56</td>
<td>781.60</td>
</tr>
</tbody>
</table>

Unsurprisingly, degree and eigenvector centrality can be computed very fast. But diffusion centrality is at least 1 order of magnitude times faster than betweenness centrality.

When even 20% of vertices have property q, the average time for a vertex is less than 0.3 sec with 100K vertices and it is faster than betweenness (0.78 sec with 100K vertices)

*“A measurement-driven analysis of information propagation in the flickr social network”, Meeyoung Cha et al, 2009
Running Time (in milliseconds)

- The average time for one vertex when 2.5%* of vertices have property \(q \)
 (In Flickr influence analysis research*, a vertex infected 1-2% of its neighbors)

*“A measurement-driven analysis of information propagation in the flickr social network”, Meeyoung Cha et al, 2009
Quality of Results

- We assigned a diffusive property (a group) to top-k vertices w.r.t. each centrality

\[Y\text{-axis} = \frac{\text{the spread after assigning diffusive properties}}{\text{the spread in the original social network}} \]

(Remember that original networks also have diffusive properties)

When we assigned diffusion properties using diffusion centrality, the expected number of infected vertices is 30-550 times larger than the expected number in original network.
Questions