Voice Recognition on Simple Microcontrollers

Callie Y. Kim
University of Maryland,
College Park
ckim1123@cs.umd.edu

ABSTRACT

Advancements in voice and speech recognition in con-
sumer equipment have been possible with the develop-
ment of signal processing, machine learning, and low-
cost embedded processors such as microcontrollers. In
this paper we review steps towards developing a sys-
tem for small vocabulary recognition on low-cost micro-
controllers such as Arduino. To do so, the method of
speech recognition must be limited in its complexity to
be programmed onto a standard microcontroller device,
in order to accommodate for the limitations of memory
and computing power in the hardware components. In
this work we review approaches towards voice and speech
recognition, present our system design and evaluation,
and discuss limitations and potential for future work.

1. INTRODUCTION

Automatic speech recognition, also known sim-
ply as speech recognition, is one of the most adapted
techniques in communication and speech processing ar-
eas, where a computer is trained to understand a user’s
speech and convert it into a series of words, thus cre-
ating a network of interactions between humans and
machines. Speech recognition can also be defined by
a signal of frequencies emitted as a function of time.
Speech processing techniques such as speech synthesis
and processing [8] as well as speaker identification and
verification [4] have made it possible to develop voice in-
terfaces or perform voice interaction with devices. Voice
recognition can be applied in several applications such
as: voice services (smartphone automation, home appli-
ances), health (prosthetic arms, wheelchairs, disability
services), data quality control (data, training), vocal
dictation (speech-to-text software), and other innova-
tive technologies (robotics, AT).

The development of computational tools with an
objective for automation in industrial and domestic
products have led to innovation in powerful embed-
ded microprocessors. In contrast, a microcontroller is
a self-contained system with peripherals, memory and
a processor that can be used as an embedded system.
Most programmable microcontrollers that are used to-
day are embedded in other consumer products or ma-
chinery including phones, hand-held devices, automo-

Diana Chou
University of Maryland,
College Park
dchou@cs.umd.edu

Geng Liu
University of Maryland,
College Park
leoliu@cs.umd.edu

biles and household appliances for computer systems.
When designing a system to be used primarily on a
microcontroller there are several advantages and dis-
advantages to consider. One major advantage is the
low cost and small size of components. Since micro-
controllers are fully integrated onto one chip, they are
cheap to manufacture. Microcontrollers typically have
much lower specs than even a low-power consumer grade
general CPU and has a generally standardized archi-
tecture, making them even more easy to mass produce.
Also, microcontrollers are very flexible, due to their pro-
grammable nature and integration for additional RAM,
ROM and I/O ports. While there are several advan-
tages to using microcontrollers, the technology can be
limited for what developers want to achieve too. The
amount of memory available for data and program ma-
nipulation limits microcontrollers’ performance, in that
it can only understand a limited number of commands,
and these commands are specific to the functions the
device is designed to handle. Furthermore, microcon-
trollers cannot interface high power devices directly and
have a more complex structure compared to micropro-
Cessors.

Our objective is to be able to implement a voice
recognition system on simple microcontrollers. The use
of low-cost microcontrollers causes a reduction in sys-
tem complexity and limits the selection of variables and
methods.

In summary, this paper makes the following con-
tributions:

e We explore various approaches to implement speech
recognition.

e We analyze and discuss the limitations of speech
recognition model in TensorFlow lite

e We experimentally deploy CMUSphinx to resource-
constrained microcontrollers and address issues that
occurred.

2. A PRIMER ON THE PREREQUISITES

2.1 Phonemes, Hidden Markov Models, and
Gaussian Mixture Models

Speech recognition can be performed at three dif-
ferent levels : signal level, phoneme level and word level.
The process can use complex modeling systems, involv-
ing mathematical functions and probabilistic models to
determine the intended word or phrase. One such tech-
nique is the Hidden Markov Model, which is a statisti-
cal Markov model in which the system being modeled is
assumed to be a Markov process with unobserved (i.e.
hidden) states. In speech recognition, a phoneme is
treated as a link in a chain, and the completed chain rep-
resents a word. A phoneme is any of the abstract units
of the phonetic system of a language that correspond to
a set of similar speech sounds which are perceived to be
a single distinctive sound in the language. To determine
the next phoneme, the chain forms branches of different
sounds that can come next, a probability score is given
to each branched off phoneme based on the built in dic-
tionary. Thus, the complete word is finally determined.

Figure 1: Hidden Markov Model for a Phoneme h.

A Gaussian Mixture Model is a probabilistic
model that assumes all the data points are generated
from a mixture of a finite number of Gaussian dis-
tributions with unknown parameters. It is used to
represent the various modalities in speech recognition.
It could also be used to create a unique voice print
for each speaker. Most phonemes occupy separate or
partly separate sub-spaces as shown in [12], and the
consonants show more separation than vowels, reveal-
ing Gaussian like distribution. The paper discusses an
improved training procedure for speech recognition, in
which phonemes are manually extracted from the train-
ing sequence and used to form Gaussians individually.

2.2 Mel-frequency cepstrum(MFC)

We need to pre-process the audio signal in order
to produce an accurate representation of the phoneme
spoken such as extracting features to identify the key
components of the audio signal and reduce background
noise. The Cepstrum is a sequence of numbers that
characterise a frame of speech which is a result of
running Inverse Fourier Transform(IFT) on logarithm
of the estimated signal spectrum. Mel-frequency cep-
strum, especially Mel-frequency cepstral coefficients
(MFCCs) are commonly used as features in speech
recognition systems. The reason why MFC is com-
monly used in speech recognition is because the fre-
quency bands are scaled on the Mel scale. Mel scale is

a perceptual scale, constructed that sounds with equal
distance to each other in the Mel scale implies that
those would be heard the same in distance to the lis-
tener. Thus, MFC is appropriate to extract features by
mirroring the human auditory systems.

2.3 Linear Predictive Coding(LPC)

Linear Predictive Coding is also another useful
method for encoding quality speech at a low bit rate by
analysing speech signals and estimating formats. The
basic idea of the LPC model is that a speech sample can
be approximated as a linear combination of the past
speech samples, as a difference equation and called a
linear predictor. Thus, while MFC extract features by
using a perceptual scale that approximates a human
auditory system, LPC predicts future samples based on
past speech samples. Due to its linear nature, LPC is an
appropriate method to compress signals such as speech
coding.

2.4 Speaker Identification

So far, we have covered approaches towards
speaker-independent speech recognition systems, which
are designed to recognize anyone’s voice without ad-
ditional training. In addition, there are also speaker-
dependent systems which work by learning the char-
acteristics of a single person’s voice, in order to iden-
tify that speaker from other users. Speaker identifi-
cation is a complicated factor that falls into speaker-
dependent voice recognition systems. Characteristics
such as speech generation (source of the voice) and the
envelope behavior (vocal and nasal tract) affect the pro-
duction of speech that occurs. According to [4], all
speaker recognition systems contain two main phases:
feature extraction and recognition. During the first
phase, a training vector is generated from the speech
signal of the word spoken by the user, which are stored
in a database for subsequent use in the recognition
phase. During the recognition phase, the system tries to
identify the unknown speaker by comparing extracted
features from password with the ones from a set of
known speakers. In their speaker recognition system,
a Welch algorithm was applied to a speech signal to es-
timate the power spectrum density, and then a cosine
distance was used to measure similarity between vectors
in order to apply a matching algorithm between the sig-
nal and the speaker. In our system, we will be focusing
on speaker-independent voice recognition.

3. INTUITION AND FEASIBILITY STUDY

Training and testing on phoneme recognition
could improve speech recognition accuracy and [8] gives
a strong insight to this. The authors used a 3-state
HMM model for phoneme recognition and argues that
they were able to achieve up to 100% accuracy in

recognizing the phonemes, thus being a cornerstone
approach for implementing complex speech recogni-
tion systems. Hence, CMUSphinx' implements speech
recognition using HMM and recently added support for
phoneme recognition to PocketSphinx decoder. Thus,
we chose PocketSphinx as an approach to implement
speech recognition on microcontrollers.

Our project aims to combine the dynamic tech-
nological developments of voice and speech recognition
with low-cost, single chip, self-contained computer sys-
tems such as microcontrollers. These boards are embed-
ded inside countless everyday items, such as wearables,
drones, toys, household appliances, and more. There is
high practicality in our project implementation, and the
area has been researched in recent developments such
as [7], [11], and [3]. In order to develop the system, we
needed to acquire a few technical components, such as
the Adafruit EdgeBadge and Arduino microcontroller.
We also needed a considerable amount of time to design,
develop, train, and evaluate out models over a 2-month
time period.

4. SYSTEM DESIGN
4.1 TensorFlow Lite

As a first step to develop speech recognition on
microcontrollers, we utilized TensorFlow lite? which is
an open source platform for machine learning on mi-
crocontrollers. Performing machine learning on micro-
controllers has an advantage such as low latency since
an Internet connection is not required therefore there
is no round-trip to a server. Figure 2 is the model
architecture we used in TensorFlow lite.

Input

l

Convolution

[]
[]
i
[]
[)

Fully Connected

l logits

Softmax

l probability

[Output]

Figure 2: Model Architecture

The model comprises of a convolutional 2D layer,
a fully connected layer and a softmax layer where the

'CMUSphinx is an open source speech recognition toolkit
https://cmusphinx.github.io/
’https://wuw.tensorflow.org/lite/microcontrollers

outputs are probabilities given raw audio sample data
as an input.The model was derived from [6] and it
aims to be used as a basic pipeline that could run on
resource-constrained microcontrollers. The model uses
a multiclass classification to recognize keywords from
the speaker.

Since there is a CNN, the model transforms raw
audio sample data to spectrograms which are two di-
mensional arrays. The transformation is performed by
slicing the audio sample data each taken from a differ-
ent time window. The window length is 30ms and FFT
is performed when creating each frequency slice. Each
result of FFT has 256 entries and 6 entries are grouped
together, creating 6 frequency buckets. Weights and bi-
ases are added in the convolutional layer and fully con-
nected layer where the activation function was Recti-
fied Linear Unit(ReLU) as it is the simplest non-Linear
function appropriate for resource-constrained microcon-
trollers.

There 15,000 training loops in total and the learn-
ing rate was 0.001 for the first 12,000, and 0.0001 for
the final 3000. After the training was finished, the
model size was 50.74kB. This is larger compared to the
model that was trained for 2 words since it uses 20kB
of RAM. We converted the TensorFlow Lite model into
a C source file that can be loaded by for the microcon-
troller.

We deployed the model both on Adafruit Edge-
Badge® which has 512KB of flash and 192KB of RAM
and Arduino? but the model is also deployable to Spark-
Fun Edge, ARC EM SDP, etc. The device will wait until
the speaker says the 2 keywords trained for the model
which are ”Yes” and "No”. The device will print out the
results on the screen and turn on the NeoPixel LEDs if it
recognizes the keywords as you can see in Figure 3. Af-
ter confirming that the model actually performs speech
recognition, we trained the model again and extended
the vocabulary to recognize 10 keywords instead of 2 :
"Yes”, "No”, "Up”, "Down”, "Left”, "Right”, "On”, "Off”,
”Stop”, ’Go”. The data we used to train the model was
obtained from a dataset in this paper [9], which consists
of over 105,000 WAVE audio files of people speaking 30
different words.

(a) Yes recognized (b) No recognized

Figure 3: Result of Speech Recognition

3https://www.adafruit.com/product/4400
“https://store.arduino.cc/usa/nano-33-ble-sense

4.2 CMUSphinx

In initialization, CMUSphinx® takes input from
command line arguments and initialize all the fields
based on provided arguments or DEFAULT values.
During data processing, CMUSphinx takes audio in-
puts, convert the inputs to frames and then applies
Mel Scale and computes Mel-Frequency Cepstral Co-
efficients (MFCC). MFCC is used to represent the fea-
ture of the speech. As soon as there are some frames
computed, typically around 5, they are used to feed
into N-gram search which uses HMM to find the best
matched word and its score.

Their library works on Unix (including Raspberry
Pi), I0S, Windows, and Android systems. We were
focusing on pocketsphinx®, which is a light weighted
library that uses CMUSphinx for speech recognition. As
moving pocketsphinx to Arduino, we need to unwrap all
the command line argument part to reduce the amount
of code. Arduino does not have a file system, we need
to remove all the file-IO and replace it with some data
structure in C.

5. EVALUATION

The result of training model with TensorFlow
shows in Table 1 with various number of keywords. The
accuracy decreases as number of keywords increases.
Since we never have a complete system of CMUSphinx
implemented on Arduino, we could not evaluate its ac-
curacy.

KeyWord Number | Accuracy | Test set size
2 91.7% 1236
10 75.3% 4726
30 63.5% 10229

Table 1: Training result with TensorFlow.

6. RELATED WORK

Keyword spotting systems have a small memory
footprint and low computational power thus making it
possible to run on mobile devices. Due to this nature,
neural networks have become an attractive choice for
KWS architecture. In [6], the authors explore a small-
footprint keyword spotting task by using Convolutional
Nerual Networks(CNN). They compare CNNs to DNNs
by limiting number of multiplies or parameters since
previous research such as [1] showed that using CNN
for KWS improves performance and reduced model size
when convolution is applied along the frequency axis.
For the CNN, the model has one convolutional layer
and the output of this convolutional layer is passed to a
linear low-rank layer and then 2 DNN layers. The rea-
son why the model has only one convolutional layer in-

*https://cmusphinx.github.io/
Shttps://github.com/cmusphinx/pocketsphinx

stead of two is because the device is power-constrained.
Multiple convolutional layers could exacerbate number
of multiplies across time, frequency and feature maps
which is not suitable for microcontrollers. As one of
our approach to explore various methods to implement
speech recognition on microcontrollers, we train a Ten-
sorFlow lite model roughly derived from this architec-
ture as a ground-work for our study.

Continuous research has been done to improve
KWS. In the paper [2], the new architecture improves
the accuracy by 3.4% with 60% fewer parameters and
50% fewer operations compared to the current state
of the art for KWS applications. The architecture is
a compact binary architecture using binary orthogo-
nal codes to analyse speech features from a voice com-
mand. The paper uses the same dataset we used to train
the TensorFlow lite model and their model size was
lower than 30kB, thus showing an opportunity to de-
ploy speech recognition even with microcontrollers with
less memory then our approach. One of the key differ-
ence that made this possible was the network architec-
ture. Instead of learning convolutional filters directly it
learns it indirectly by combining weighting coefficients
of deterministic binary basis linearly. For further work,
we could extend the current TensorFlow lite model by
adopting their network architecture, mitigating mem-
ory constrained problems when using microcontrollers
for machine learning.

7. LIMITATIONS AND DISCUSSION

TensorFlow Lite model we trained has limitations
because it uses multiclass classification to recognize
words and results with slow computation, low accuracy
when the number of words increase. We were not able
to complete a full system that can run on Arduino based
on CMUSphinx since we turned our focus from Tensor-
Flow lite to CMUSphinx mid-way during the semester.
CMUSphinx is a complex and complicated library, re-
lying heavily on file IO such as using memory-mapped
files. However, all of those are supported by Linux ker-
nel but not on Arduino. Arduino is not capable to run a
kernel since it can not process file 10. Thus, to convert
the platform the code needs to run we need to restruc-
ture components that require file IO in CMUSphinx.

In [10], the authors introduce a noise suppression
filter to enhance speech recognition on microcontrollers.
Background noise can introduce recognition errors thus
developing a noise suppression filter is important to im-
prove the accuracy of speech recognition. Especially,
microcontrollers have limited power and resource to im-
plement speech recognition thus recognition errors are
more likely to occur when the environment is noisy.
Thus, for future work we could extend our study by
implementing a noise suppression filter for microcon-

trollers to improve the accuracy of the TensorFlow lite
model.

There has been prior research on how to utilize
speech recognition on microcontrollers and one study
was an application of a voice-activated powered wheel
chair control [11]. The research of how to improve voice
controlled wheel chair was continued recently [3]. The
goal was to implement a voice controlled wheel chair
prototype with low cost to assist people with disabili-
ties. Conventional wheel chairs use a joystick input to
control direction and movement which limits access for
disabled people, especially people who have difficulty
controlling their hands.Hence, in the case of disabled
users speech is an input worth exploring even for micro-
controllers as it could be the only remaining medium to
communicate such as patients with severe spinal cord
injuries. Also, paper [7] introduces an application of
speech recognition deployed on microcontrollers by con-
trolling movement of a mobile robot through limited
voice commands. Speech recognition could facilitate
communication with robots, an important feature to
consider in Human Robot Interaction(HRI). The area
where voice command control using microcontrollers
can be even extended to everyday lives such as elec-
trical household appliances [5].

Thus, even though microcontrollers have limita-
tions in memory and computing power, it is worth to
continue the exploration of implementing voice recogni-
tion on microcontrollers in various areas.

8. REPRODUCIBILITY INFORMATION

All of code we have used can be found at Google
Drive” License are included either in the directory or on
top of each file.

Upload the code under /Speechrecognition/-
TensorFlow/micro_speech/main.cc to Arduino nano
BLE 33 Sense® board, it should be able to recognize
"yes” - green light, "no” - red light, and unknown - blue
light.

Training code is wunder TensorFlow/micro-
_speech/train, the data set is under same directory in
a folder named dataset. We have run the training code
with Jupyter Lab with Anaconda. All the required
python packages are included inside requirements file.

Install sphinxbase® to install sphinxbase library,
then install pocketsphinx '°. Then follow the instruc-
tions under CMUSphinx tutorials site'!, /Speechrecon-
gnition/CMUSphinx/example/hello_ps.c should be able

"https://drive.google.com/drive/folders/
1wnlHxrm3tkQFr0ikMfsx8THPAhi73ZCY7usp=sharing
8https://store.arduino.cc/usa/nano—33—b1e—sense
“https://github.com/cmusphinx/sphinxbase
Ohttps://github.com/cmusphinx/pocketsphinx
"https://cmusphinx.github.io/wiki/
tutorialpocketsphinx/

to compile and run, which recognize the words in go-
forawrd.raw file containing speech "go forward ten me-
ters”

Folder /Speechrecognition/example/Voice_with_Sph-
inx contains the code that transformed from CMUS-
phinx and pocketSphinx library with modification to
run on Arduino, it currently does not compile and still
working in progress.

REFERENCES

ABDEL-HAMID, O., MOHAMED, A., JIANG, H.,
AND PENN, G. Applying convolutional neural
networks concepts to hybrid nn-hmm model for
speech recognition. In 2012 IEEFE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2012), pp. 4277-4280.
FERNANDEZ-MARQUES, J., TSENG, V. W.-S.,
BHATTACHARA, S., AND LANE, N. D. On-the-fly
deterministic binary filters for memory efficient
keyword spotting applications on embedded
devices. In Proceedings of the 2nd International
Workshop on Embedded and Mobile Deep
Learning (2018), pp. 13-18.

Hou, T. K., YAGASENA, AND CHELLADURAI.
Arduino based voice controlled wheelchair.
Journal of Physics: Conference Series 1432 (jan
2020), 012064.

Maazouzi, A., AQiLi, N., RaJji, M., AND
HaMMOUCH, A. A speaker recognition system
using power spectrum density and similarity
measurements. In 2015 Third World Conference
on Complex Systems (WCCS) (2015), pp. 1-5.
Novani, N. P., HErRsyaH, M. H., AND
HambpANU, R. Electrical household appliances
control using voice command based on
microcontroller. In 2020 International Conference
on Information Technology Systems and
Innovation (ICITSI) (2020), pp. 288-293.
SAINATH, T. N., AND PArRADA, C. Convolutional
neural networks for small-footprint keyword
spotting. In Sizteenth Annual Conference of the
International Speech Communication Association
(2015).

[7]

[10]

[11]

[12]

THIANG, D. W. Limited speech recognition for
controlling movement of mobile robot
implemented on atmegal62 microcontroller. In
2009 International Conference on Computer and
Automation Engineering (2009), pp. 347-350.
VEERAVALLI, A. G., PAN, W. D., AbHAwmI, R.,
AND CoX, P. G. A tutorial on using hidden
markov models for phoneme recognition. In
Proceedings of the Thirty-Seventh Southeastern
Symposium on System Theory, 2005. SSST ’05.
(2005), pp. 154-157.

WARDEN, P. Speech commands: A dataset for
limited-vocabulary speech recognition, 2018.

YAN CHAN, K., NorDHOLM, S., Yiu, K. F. C.,
AND TOGNERI, R. Speech enhancement strategy
for speech recognition microcontroller under noisy
environments. Neurocomput. 118 (Oct. 2013),
279-288.

Y1, J. Z., TaN, Y. K., ANG, Z. R., AND
Panpa, S. K. Microcontroller based

voice-activated powered wheelchair control. In
Proceedings of the 1st International Convention

on Rehabilitation Engineering Assistive
Technology: In Conjunction with 1st Tan Tock
Seng Hospital Neurorehabilitation Meeting (New
York, NY, USA, 2007), i-CREATe ’07,
Association for Computing Machinery, p. 67-72.
ZHANG, Y., ALDER, M., AND TOGNERI, R.
Using gaussian mixture modeling in speech
recognition. In Proceedings of ICASSP 9. IEEE
International Conference on Acoustics, Speech
and Signal Processing (1994), vol. i,

pp. 1/613-1/616 vol.1.

