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Abstract

This paper discusses an optimized approach to decision
making in regards to resource allocation within health care
systems and the medical industry. Decision making in med-
ical resource management is often sequential and uncertain
in nature. Markov Decision Processes (MDPs) are used to
model decision-making in sequential environments and can
be used as a technique for solving decision problems. MDPs
allow a decision holder, to make the best possible decisions
in the environment they inhabit, which changed state in re-
sponse to choices of action made by the agent. We will be
describing our MDP model and illustrating the performance
of our design with data focusing on health care professionals
as well as medical supplies. We will be analyzing our eval-
uations and offer a promising approach towards an optimal
policy focusing on increased measures of health. We will
also discuss the challenges in addressing complex resource
allocation problems that arise in healthcare settings.
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1 Introduction

The health care system in the United States consists
of several moving parts that are led by stochastic decision-
making. Such a system often causes sequential decision
problems to arise. When determining the selected amount
and destination for a specific set of resources, a decision
holder must consider factors such as the demographic and
statistical analysis of the location, such as supply and de-
mand, which can constantly change. One source of uncer-
tainty is the level of health within a population. In the case
of a hospital setting that has an average amount of daily foot
traffic, there is some amount of chance where a sudden in-
flux of admitted patients can occur at any given point in time.
Other sources of uncertainty could deal with the availability
of scarce resources or the limitations of resources set by stan-
dards and regulations. Imagine hospital patients all needing
the same type of medical supplies or treatments over a short
period of time, however, given the nature of the type of re-
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source, the amount was not properly allocated to that region.
In the current healthcare system, most of these allocation de-
cisions are made using heuristic strategies, in which solu-
tions are practical and sufficient for short-term goals but not
necessarily optimal.

In this work, we explore Markov Decision Processes, a
model used for sequential decision making, as an approach
for developing an optimal policy in resource allocation. We
are particularly interested in how allocating sets of resources
to various geographical regions can impact different mea-
sures of health. We focus on life expectancy, years of po-
tential life lost, child and infant mortality, as well as quality
of life for optimization. We express this problem through
a Markov Decision Process (MDP) with attributes for each
state and action for the agent, or allocation decision-maker.
Our steps towards this solution involve the following:

1. We determine the framework for our MDP, the compo-
nents involving the agent and the environment, and the
method for finding an optimal decision policy.

2. We develop a design for our MDP, where the agent is the
decision maker and the states are the resources.

3. We evaluate our MDP model with existing data sets con-
taining information on specific allocations and the re-
sulting rewards. Experiments to be conducted will focus
on a set of specific health measures.

The rest of the paper is organized as follows. Section 2
describes the framework for Markov Decision Processes and
our MDP design. Section 3 describes the data we will be
testing our model on. In section 4, we run our experiments
and evaluate our results with different measures of health.
We proceed to discuss our findings in section 5, as well as
related works in section 6. We then conclude the paper is
section 7.

2 Markov Decision Processes

In this section, we provide a brief overview of MDPs
before detailing the structure of our design. A Markov De-
cision Process (MDP) is a decision making framework for
modeling dynamic systems under stochastic and uncertain
environments. An MDP binds an agent’s decisions through



the proper definition of system states, which are variables
that contain the information for making future decisions. An
MDP model can cover a wide range of applications set by
finite and infinite horizons (the total number of decisions we
can make) as well as discrete and continuous time (how often
and randomly decisions are made).

2.1 MDP Overview

Markov Decision Processes assume a finite number of
states and actions. At each step, an agent observes a state
and executes an action, incurring rewards to be maximized
(or costs to be minimized). The rewards and succeeding state
only depend on the current state and chosen action, and the
transition occurs according to a known probability distribu-
tion based on the level of uncertainty in the environment. As
a standard assumption of a Markov process, we assume that
we have perfect knowledge of the current state so that future
transitions and rewards are independent of the past.

2.2 MDP Definition
A Markov Decision Process is defined by a tuple
(S,A,T,R), where:

1. Sis the set of defined states and for every state s € S

2. A is the set of all actions or decisions and Ay is the are
the available actions at state s

3. T is aa known probability transition function: 7 (s,a,s’)
where s € S,a € A,d’ € Sis P(s'|s,a)

4. R is the reward function R(s,a,s’) which is the reward at
the current step
A discount factor, v, affecting how the reward is counted
can also be factored at each step, to motivate the agent
in favor of taking actions earlier.

In the case of infinite utilities, there are a couple of so-
lutions that allow the system to converge. Applying a finite
horizon allows for termination after a fixed T steps and gives
non-stationary policies (1t depends on the time left). Dis-
counting (0 < y < 1) affects rewards to lose life over time
(a smaller y means a smaller horizon). Also, absorbing states
can guarantee that for every policy, a terminal state will even-
tually be reached.

2.3 MDP Design

The states of our MDP will be the resources for which
an allocation decision will be made. Each state will cor-
respond to a different resource. So for a set of resources
R ={Ri,R2,R3,...,R,}, the states of our MDP will be S =
{81,52,83,...,8,} where S; is the state corresponding to the
resource R;.

For the actions, we define each action to instead rep-
resent a class of smaller individual actions, which we will
hereafter refer to as action classes. We define action classes
to mean a range which encompasses some amount of smaller
individual actions. This was decided as a way to be able to
reduce the total number of actions in our MDP. Had we at-
tributed a single action to represent each data point as they
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Fig. 1: Representation of the structure of our MDP with 3
states and 2 actions. Overall structure will remain the same
while number of states and number of actions can be changed
freely

were provided in the original data, we would have wound
up with thousands, if not tens of thousands of different ac-
tions. So as a remedy to this, our classes of actions serve
as a range to reduce the total size of our actions set. We
had to further manipulate our set of actions as different re-
sources had data points of different magnitudes, so for the
same set of actions to be applicable to all states (resources),
the final result for the actions became percentiles. To ac-
count for the various different magnitudes across resources,
the raw values that a percentile correlates to will be based
on the specific values for a resource. In other words, the
action classes, and thus the corresponding percentiles, will
be the same for all the resources, but what the percentiles
are actually representing will be based on the data values
of the specific resource. Put another way, the 100th per-
centile for any resource R will always be the maximum data
value for that resource, with all other percentiles also be-
ing adjusted accordingly. More formally, we define our ac-
tion set A = {(Plaaplh),(PZmP%)’ (P3g,P3;,),...(PXa,PXb)},
where P, represents the lower limit percentile for action
class i inclusive, Py, represents the upper limit percentile for
action class i exclusive except the very last action class which
will contain the upper limit which is the 100th percentile,
and X represents the total number of action classes the MDP
will have. Consequently, Vi € [X], Py, — Piy = (100/X); so if
we have X = 5 action classes, then every action class will
represent a 20th percentile range, [Oth,20th),[20th,40th),
and so on. If we have X = 100 action classes, then ev-
ery action class will represent a single percentile range,
[Oth, 1st),[1st,2nd),[2nd,3rd), and so on. For making sure
the action classes are representative of the actual resource
data numbers, V resources r, the 100th percentile will be
max(all data for r), the 99th percentile will be 0.99+max(all
data for r), and so on.

Figure 1 provides a simple representation of what our
MDP looks like. All the actions for any state s leads to
the same state s’. In other words, there is always only
one possible state that can be reached from any given state.



Table 1: Sample reward data

Resource 1 | Resource 2 Total Re-
ward
Accounts Accounts
Geosraphical for 20% | for 80 %
.g p of total | of total | T1
Region 1 . .
resources in | resources in
this region this region
Accounts Accounts
Geosraphical for 30% | for 70%
.g P of total | of total | T2
Region 2 . .
resources in | resources in
this region this region

We define our transition function such that Vs,s' € S,a €
A,T(s,a,s") = [1]. We define all actions to be determinis-
tic based on the idea that when an agent makes a decision
to allocate a amount for a resource x, they can be sure that
taking such an action will guarantee a amount of resource x
to be allocated. The loop structure of our MDP was simply a
result of more convenient implementation.

The reward measure will be based on some measure of
health. Different measures can be substituted in as the re-
ward to see if using different measures results in different
policies. For any measure, the reward for each action will be
the average of the weighted values of that measure for their
respective geographical regions. The weights will be based
on what the percentage of the specific resource in question is
in relation to all the resources under consideration. Consider
the example in table 1. For an action acting on resource 1,
the reward for this action will be r; = avg(0.2+T1,0.3xT2),
and the reward for the same action on resource 2 would
be rp = avg(0.8 % T1,0.7 x T2), assuming there are only 2
resources under consideration and the amounts of each re-
source across both regions fall into the same action class.
This means that taking the given action class on resource 1
will result in a reward of r; and a reward of r, when taken on
resource 2. This approach depends on the assumption that
larger proportions of a resource produce larger effects in a
geographical region and thus should carry more weight.

We will use a discount factor of Yy = 1. This choice
stems from the assumption that all decisions, no matter what
point in time they were made, should have the same influ-
ence/importance. With y= 1 and a loop structure, we resort
to using a finite horizon with T' = |§| steps to guarantee con-
vergence.

3 Data

The way our MDP determines the best allocation policy
for a set of resources is by examining the impact that exist-
ing allocation decisions of those resources have on various
measures of health. Given this, testing our MDP would re-

quire data that includes information on the specific allocation
amounts of various different resources as well as information
on various measures of health in the places that were allo-
cated those resources. To this end, we utilized publicly avail-
able data sets which provided this information. The original
resources data was distributed from [1], but a reorganized
version was made available via [2], which was what we ulti-
mately based our MDP experiments on. The health measure
data was obtained via [3], but since the data was not provided
in a manner that was readily usable for our MDP, we com-
piled the separate sets on the site to create our own working
data set. One point to note is that this site is not the origi-
nal source of the information; it is more an intermediary site
which has aggregated data from various sources that include
government agencies, medical associations, local reporting
sites, and more. The specific sources for all the original in-
formation are available at [3]. Another facet of our data that
is worth noting, and which will become more apparent in our
experiments, is the imbalance of human vs non-human data.
More specifically, there is simply much more data included
on human resources. As a result, the policies we obtain will
be much more reflective and applicable to human resources.

4 Experiments

We run our MDP through various allocation decisions of
different groups of resources along with different measures
of health. For each experiment, our MDP produces an al-
location policy which, according to our design, defines the
optimal allocation of each resource in consideration while
maximizing the benefits for the given health measure. We set
up simulations to obtain both national and state-level poli-
cies; national-level policies are based on an overview over
all the available data with no consideration for origin of any
data point, while state-level policies are achieved by sepa-
rately considering the data in each state. In each experiment,
the set of resources for which a policy is obtained was de-
cided based on certain previous studies as well as our own
judgements of which resources would, or should, have the
most effect on the specific health measure. For example,
if life-expectancy were the health measure in consideration,
it would make more sense that the policy should deal with
Geriatrics, the health care of the elderly, more so than with
Neonatology, the medical care of newborn infants; the oppo-
site would be true should the health measure in consideration
be infant mortality.

4.1 Life Expectancy

We start our experiments with life-expectancy as the
health measure as it is a common and important health mea-
sure that is easy to interpret and understand but which also
has considerable implications in many other areas [4]. Most
of the resources included in this experiment were based on
our own judgement, with the major exception being that of
Primary Care Physicians, where a previous study [5] sug-
gests a positive association between increased primary care
physician supply and life expectancy.
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Fig. 2: National policy for life expectancy

A quick analysis of the national policy shown in figure
2 reveals the national policy suggests that maximal life ex-
pectancy is achieved when primary care physicians are allo-
cated at the 95th percentile of what is currently being allo-
cated, which seems to stay in line with the results obtained
by [5]. Though this policy isn’t exactly suggesting the same
thing, it would stand to reason that the policy implies that
places which are allocating, or have been allocated, below
the 95th percentile would be able to increase life expectancy
should the allocation be closer to the 95th percentile. On
the other hand, this policy would also mean that places with
allocations over the 95th percentile do not do any better, if
not worse, which stands in contrast to the increasing life
expectancy with increasing primary care physician supply
of [5]. As such, while our findings would seem to confirm
the positive association, it also suggests that there is a limit
to this association. Such reasoning can also be applied to the
other resources that have a recommended best policy of less
than the 100th percentile. In short, these resources hit a limit
in terms of how much they can help increase life expectancy
as their allocation amounts are increased.

Conversely, this policy would suggest that in order
to maximize life expectancy, resources such as FTE (Full
Time Equivalent) Hospital Employees, Emergency Medicine
Physicians, Geriatricians, and Critical Care Physicians
should be maximized. In other words, as far as the data used
in this paper goes, increasing the allocations for these re-
sources will have a corresponding increase of life expectancy
with no observable limit.

With that being said, it’s also worth mentioning that be-
cause this policy is proposed at a national level, this kind of
policy is subject and susceptible to large variations in mea-
surements that may affect the final resulting policies. More
specifically, because of how rewards are calculated, the re-
wards for national policies will be a weighted average over
quite a large number of data points, and it is much easier for
the many data points in such an average to skew the result-
ing average in one way or another. This may produce results
that highlight negligible or nonexistent factors while ignor-
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Fig. 3: Best policies that maximizes life expectancy for each
state

ing other more pertinent factors. Such a possibility is not
impossible and is something we explore by comparing this
policy with one that would result from a more fine-grained
examination, namely at the state level instead of the national
level.

If we examine figure 3, it is immediately evident that
there is no one-size-fits-all policy, which may have been the
conclusion based on the national-policy. If we consider the
state policies for primary care physicians in particular, the
state policies would suggest something closer with the find-
ings of [5] than what may be suggested by the national pol-
icy. For this specific resource, it seems more likely that the
95th percentile allocation as suggested by the national policy
was merely a product of how it was generated, culminating
with the 95th percentile having the highest average, which
can also be interpreted as the 95th percentile having the high-
est expected gain for life expectancy. Instead, it seems the
most common best policy for a state would be to maximize
the allocation of primary care physicians, something which
holds true for all the other resources as well.

However, even though the most common best policy for
states in any given resource would be to maximize the al-
location of that resource, this is clearly not the case for ev-
ery state; in fact, there are quite a fair number of states for
all the resources that achieved their maximal life expectancy
with less, and some considerably less, than the maximal al-
location of the resource, suggesting there is quite the differ-
ence across states in life expectancy gains for any percentile.
Such differences could very well influence a policy obtained
through a process like the national-level policy, which would
explain the noticeable difference between the national policy
and the individual state policies. But returning to the origi-
nal observation that there is quite a fair amount of variation
in the states’ best policies, an immediate resulting inquiry
would be why this is the case, and why is it as extensive as
it is. While this is a very relevant consideration, our MDP,
and the purposes of this paper, are not suited to researching
the likely causes of this phenomenon. We do possess data on



various potential causes but such investigation would require
modifications to our MDP design or the construction of other
models entirely, so we leave this as a future work.

The other major observation from comparing the state
level policies with the national policy is the considerable
disconnect between the two types of policies for certain re-
sources. For this experiment in particular, this disconnect
seems most pronounced between the national and state allo-
cation policies for hospital beds. Looking more closely at
the two types of policies for this resource, we see that the
national policy for hospital beds is just above the 75th per-
centile, maybe around 76 or 77. However, from the states’
policies, we see that virtually every single state has a pol-
icy above the national policy. Based on what we defined
our rewards system to be and how rewards are calculated as
specified in section 3, it would seem most intuitive that the
national level policy would reflect an average, more or less,
of the various state policies, as the actions and rewards for
both types of policies are the same, only the rewards for na-
tional policies are obtained from averaging a larger set, one
that spans more than one state, supposedly, as opposed to
just averaging over a single state for state policies. Because
of this, the fact that the national policy for this resource is
nowhere close to being an average of the state policies is un-
derstandably suspicious. This is definitely something worth
addressing, but we leave the specific discussion of this to the
next experiment.

4.2 YPLL (Years of Potential Life Lost)

A second experiment we conduct uses Years of Potential
Life Lost rate as the health measure to consider. This specific
health measure brings with it a more representative measure
to analyze premature mortality. The relevance and impor-
tance of this specific measure is in its ability to address the
inability of other mortality data in painting a wholesome pic-
ture of mortality trends; specifically the fact that such mortal-
ity data are inevitably dominated by deaths of the elderly [6],
and thus perhaps not as pertinent when attempting to focus
on aspects such as preventable deaths.

For this experiment, we decided to use the same set of
resources as the first experiment as we believe the same set
of resources are also rather influential when addressing pre-
ventable deaths. We present the national level policy in fig-
ure 4 mostly to provide a sense of what allocations have the
highest expected reward, which in this case is minimizing
YPLL, due to the reasons specified in the previous experi-
ment. The state-level policies demonstrate a comparable sit-
uation with its corresponding national-level policy as seen
in the previous experiment. Considering how both life ex-
pectancy and YPLL involve preventing or delaying death in
one way or another, it seems plausible that the policies for
the same set of resources, at least at the state level, are rather
similar. However, the main discussion point which will be
the primary focus of this experiment discussion is the discon-
nect between national and state policies that was mentioned
previously. The reason this discussion was left to this section
despite being introduced earlier simply rests on the fact that
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Fig. 4: National Policy to minimize Years of Potential Life
Lost
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Fig. 5: Best policies that minimize YPLL for each state

the occurrence is much more pronounced in this experiment.

While the life expectancy experiment highlighted this
fact with the hospital beds resource, for this experiment it is
most apparent with the registered nurses resource, and to a
higher degree as well. Looking at the national policy for this
resource, we see that the recommended allocation percentile
is just under 50. However, when looking at the state policies,
there isn’t even a single state that is recommended at or be-
low the 60th percentile. We will show how this is possible
before discussing potential ramifications.

Consider the example data set presented in table 2.
When finding the national policy, the calculated rewards for
the 100th, 90th, and 80th percentiles would all be (100 -+
10+ 10)/3 = 40, while the calculated reward for the 50th
percentile would be (45 +45+45)/3 = 45. Afterwards,
when choosing the percentile for best policy, the choices
would be 100th percentile: reward 40, 90th percentile: re-
ward 40, 80th percentile: reward 40, and 50th percentile:
reward 45. As a result, the national policy for this resource
would be the 50th percentile. And yet, when the states are



Table 2: Sample data set

State  Alloc. percentile Reward Amount
1 100 100
1 90 10
1 80 10
1 50 45
2 100 10
2 90 100
2 80 10
2 50 45
3 100 10
3 90 10
3 80 100
3 50 45

considered individually, the best policy for state 1 would
be the 100th percentile, state 2 would be 90th percentile,
and state 3 would be 80th percentile, none of which are the
same as the national policy. From this example, we see how
variation across states can heavily influence national policy,
painting quite the different picture and resulting in alloca-
tion decisions that would, in certain cases such as this ex-
ample, clearly not be optimal. While such skew can also
impact state-level policies, the variation would need to be
much more extensive, but at that point, if such an allocation
decision (percentile) carries with it that much uncertainty,
perhaps it would be better to stick with a decision that may
have a lower absolute gain but a much higher guarantee.

From this discussion, we believe it would be more pru-
dent to consider allocation policies at a state-level while leav-
ing the national level policy just as a means to designate the
allocation with the highest expected gain. As such, for the
remaining two experiments, we still present both types of
policies, but analyses provided will take this review into ac-
count.

4.3 Other Experiments

We perform a few other experiments, all displayed in
figure 6, as evidence of our MDPs ability to operate on a va-
riety of different health measures. Our experiments on Child
and Infant Mortality were motivated in part as a response to
how YPLL is calculated [6], where certain measures such
as deaths of younger age groups can have a sizeable im-
pact. The resources we decided to consider for these two
experiments were chosen based on observed leading causes
of death worldwide for children under 5 [7]. From these ex-

periments, we once again see a wide variety of allocation
percentiles with the best expected results in the national poli-
cies while the state policies once again display a tendency to
suggest there exists a reason a sizeable number of states are
able to achieve maximal results with fewer resources.

Our final experiment involves using a self reported qual-
ity of life health measure, which seems to provide a consid-
erable indication of mortality risk [8], a common theme in
the other health measures we investigate. This time, there
doesn’t seem to be that large of a discrepancy between the
national and state-level policies as compared to some of our
other experiments, so although there is still quite a fair bit of
variation between states as seen in the state policies, perhaps
the variation across states for any given allocation percentile
is not as extensive as other health measures. Although the
retest reliability of self reporting [9] could be a potential rea-
son, we will have to leave this as a future work as mentioned
earlier.

S Discussion

For the state-level policies across all the different health
measures, two commonalities were the persistent nature of
policies to cluster at the 100th percentile for all resources
and the considerable variability of the policies despite this
cluster. As common intuition would dictate that higher allo-
cations of resources leads to better results, which in this case
would mean larger improvements for any given health mea-
sure, the clustering of 100th percentile policy recommenda-
tions does not seem that surprising. But the same intuition
would conflict with the large, and consistent, variation of
allocation policies across states for all the resources across
all health measures. If the intuition really was true, it alone
would be hard pressed to explain such extensive varying re-
sulting state policies. These state policies our MDP produced
would suggest deciding on an allocation policy goes much
farther beyond just “more is better”. While there can be a
whole host of different potential reason as to why some states
are able to achieve the same results, if not better results, with
considerably less resources, at this point we can only specu-
late as to what those causes may be. In fact, it may even be
possible that the relatively lower recommended allocations is
no more than a result of that specific state being exception-
ally better in terms of the health measure to begin with, and
thus not requiring as much resources to be allocated to it.

There are also some important points to consider, as dis-
cussed in [10], which cause us to contemplate priority in
decision-making. The first point mentioning that efficiency
has both ethical and economic importance. In the case where
certain health systems are more efficient than others, if we
want systems to meet more health needs, then we prefer
more efficient health systems. A second point is that effi-
ciency is not the only goal of health policy; health policy
is not only concerned with the improvement of population
health as a whole, but also with fairness in that distribution
of health. Since it depends on subjective levels of reason-
ing, it is complex to determine how to favor better outcomes
vs. fair chances. These cases bring up current policies that
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Fig. 6: National and state level policies for self reported health, child mortality, and infant mortality

have taken place to attempt for better medical resource allo-
cation, including comparative effectiveness research (CER),
and cost-effective analysis (CEA), both which aim to aid
in the decision-making process by looking at effectiveness
and fairness. CEA also incorporates a disability-adjusted life
year (DALY) or a quality-adjusted life year (QALY) for mea-
suring health outcomes.

Other current suggested policies aim to compromise be-
tween priority rules. For instance, the Triage-Treat-and-
Release (TTR), a program developed in 2010 by the Lutheran
Medical Center (LMC) in Brooklyn, New York , aimed to
provide a solution for cases of overcrowded patients in emer-
gency departments [11]. At LMC, differences between acu-

ity in patients determined the admission and treatment pro-
cess, and physicians as well as physician assistants (PAs) and
nurse practitioners (NPs) are both used for both phases of
serving low-acuity patients (whereas traditionally, NPs usu-
ally triage patients while physicians and PAs are responsible
for treating patients.

6 Related Works

In recent literature, various studies have approached the
problem of resource allocation with policies that propose
how to make the best use those resources. The study in [11]
looks closer into finding a solution for appropriately allocat-



ing medical resources that have already been distributed be-
tween low-acuity patients and patients in more critical condi-
tions. In their study, they build off the TTR program with the
development of a K-level threshold policy that would priori-
tize treatment unless K or more patients are in triage. Thus, is
a class of policies that capture a decision-maker’s valuation
of each activity’s importance, where lower K values signi-
fies triage priority. Their approach is focused toward aiding
physicians with an effective and simple method to allocate
their time between triage and treatment. The research in [12]
examines the current and historical trends in health resource
distribution in the U.S. with respect to hospital beds and
physicians. Their method involved using the Gini Coefficient
(a statistical measure of distribution used to gauge economic
inequality among a population) to evaluate variations in dis-
tribution at a county level during three decades, and their
results demonstrated that physician distribution became less
equitable, while hospital bed equity increased. Their find-
ings confirmed positive associations between current physi-
cian and hospital bed distribution and suggested an increase
in inequality of physician manpower.

There is also existing research in the use of Markov De-
cision Process to find solutions for other applications in the
medical and health industry. Decisions in medical treatment
is also a sequential process, as the course of a treatment
must consider factors such as a patient’s current health as
well as the best treatment decisions for that patient in the
future. As such, Physicians need to make subjective judge-
ments about treatment strategies, and so [13] offers the use
of MDPs as a technique for finding and optimal policy to
solving these decisions. Their analysis refers successful ap-
plications of MDPs to medical treatments encompassing epi-
demic control, drug infusion, kidney and liver transplanta-
tion, and treatment for Spherocytosis, Ischemic heart dis-
ease, and breast cancer. Despite this wealth of potential
applications, factors including heavy data requirements and
computational limitations can cause for few successful ap-
plications of the decision-making model.

7 Conclusion

We explore a way to systematically determine the best
course of action to take in allocating any given set of re-
sources that will maximize the benefit it has on a spe-
cific health measure. Our approach involves constructing
a Markov Decision Process which uses data on current and
past allocations for those resources along with data on the
desired health measure to maximize. We call attention to the
most apparent shortcomings of our model, mainly the fact
that the policies become increasingly dubious as the MDP
is subject to data with increasing variability. Nevertheless,
we show that our MDP is still able to operate and produce
relevant results so long as the variability is controlled to an
extent. Our MDP has a strong focus on quantitative mea-
surements and bases all calculations wholly on such data, so
there is no consideration for more qualitative aspects such as
overall fairness. Furthermore, our MDP can only produce
results which highlight the apparent effects, without being

able to investigate the potential underlying causes; such ex-
amination is very relevant with the focus of this paper, but as
it requires more work on the design of the MDP, it remains
at large for the time being.
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