
Structure-from-Motion

• Determining the 3-D structure of the world, and/or the 
motion of a camera using a sequence of images 
taken by a moving camera.
– Equivalently, we can think of the world as moving and the 

camera as fixed.

• Like stereo, but the position of the camera isn’t 
known (and it’s more natural to use many images 
with little motion between them, not just two with a lot 
of motion).
– We may or may not assume we know the parameters of the 

camera, such as its focal length.



Structure-from-Motion

• As with stereo, we can divide problem:
– Correspondence.

– Reconstruction.

• Again, we’ll talk about reconstruction 
first.
– So for the next few classes we assume that 

each image contains some points, and we 
know which points match which.



Structure-from-Motion

…



Movie



Reconstruction

• A lot harder than with stereo.
• Start with simpler case: scaled 

orthographic projection (weak 
perspective).
– Recall, in this we remove the z coordinate 

and scale all x and y coordinates the same 
amount.



Weak perspective (scaled 
orthographic projection)

• Issue
– perspective effects, 

but not over the 
scale of individual 
objects

– collect points into a 
group at about the 
same depth, then 
divide each point by 
the depth of its group

(Forsyth & Ponce)



Perspective -> Scaled 
Orthographic

• Recall: (xi,yi,zi) -> (xi/zi, yi/zi) 
• Let Z = (z1+z2 + …+zn)/n
• Then, (xi,yi,zi) approx-> (xi/Z, yi/Z) 



The Equation of Weak 
Perspective

),(),,( yxszyx →
• s is constant for all points.

• Parallel lines no longer converge, they remain 
parallel.

�
�
�
�
�

�

�

�
�
�
�
�

�

�

��
�

�
��
�

�
=��

�

�
��
�

�

1

000

000

Z

Y

X

s

s

y

x



Pros and Cons of These 
Models

• Weak perspective much simpler math.
– Accurate when object is small and distant.
– Most useful for recognition.

• Pinhole perspective much more 
accurate for scenes.
– Used in structure from motion.

• When accuracy really matters, must 
model real cameras.



First: Represent motion

• We’ll talk about a fixed camera, and moving object.

• Key point:
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Remember what this means.  

• We are representing moving a set of points, 
projecting them into the image, and scaling them.

• Matrix multiplication: take inner product between 
each row of S and each point.  First row of S 
produces X coordinates, while second row produces 
Y.

• Projection occurs because S has no third row.

• Translation occurs with tx and ty.

• Scaling can be encoded with a scale factor in S.

• The rest of S must be allowing the object to rotate.



Examples:

• S = [s, 0, 0, 0; 0, s, 0, 0];  This is just 
projection, with scaling by s.

• S = [s, 0, 0, s*tx; 0, s, 0, s*ty];  This is 
translation by (tx,ty,something), projection, 
and scaling.



Structure-from-Motion

• S encodes:
– Projection: only two lines

– Scaling, since S can have a scale factor.
– Translation, by tx/s and ty/s.

– Rotation:

SPI =



Rotation
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3D rotation of 
the points in P.



First, look at 2D rotation 
(easier)
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Matrix R acts 
on points by 
rotating them.

• Also, RRT = Identity. RT is also a rotation 
matrix, in the opposite direction to R.



Why does multiplying points by R rotate them?

• Think of the rows of R as a new coordinate system.  
Taking inner products of each points with these expresses 
that point in that coordinate system.  

• This means rows of R must be orthonormal vectors 
(orthogonal unit vectors).

• Think of what happens to the points (1,0) and (0,1).  They 
go to (cos theta, -sin theta), and (sin theta, cos theta).  They 
remain orthonormal, and rotate clockwise by theta.

• Any other point, (a,b) can be thought of as a(1,0) + 
b(0,1).  R(a(1,0)+b(0,1) = Ra(1,0) + Ra(0,1) = aR(1,0) + 
bR(0,1).    So it’s in the same position relative to the 
rotated coordinates that it was in before rotation relative 
to the x, y coordinates.  That is, it’s rotated.



Simple 3D Rotation
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Full 3D Rotation
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• Any rotation can be expressed as combination of three 
rotations about three axes.
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• Rows (and columns) of R are 
orthonormal vectors.

• R has determinant 1 (not -1).



• Intuitively, it makes sense that 3D rotations can be 
expressed as 3 separate rotations about fixed axes.  
Rotations have 3 degrees of freedom; two describe an 
axis of rotation, and one the amount.

• Rotations preserve the length of a vector, and the angle 
between two vectors.  Therefore, (1,0,0), (0,1,0), (0,0,1) 
must be orthonormal after rotation.  After rotation, they 
are the three columns of R.  So these columns must be 
orthonormal vectors for R to be a rotation.  Similarly, if 
they are orthonormal vectors (with determinant 1) R will 
have the effect of rotating (1,0,0), (0,1,0), (0,0,1).  Same 
reasoning as 2D tells us all other points rotate too.  

• Note if R has determinant -1, then R is a rotation 
plus a reflection.



Questions?



Putting it Together
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We can just write stx as 
tx and sty as ty.



Affine Structure from Motion
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Affine Structure-from-Motion: 
Two Frames (1)
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Affine Structure-from-Motion: 
Two Frames (2)
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To make things 
easy, suppose:



Affine Structure-from-Motion: 
Two Frames (3)
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Looking at the first four points, we get:
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Affine Structure-from-Motion: 
Two Frames (4)
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We can solve for motion by inverting matrix of points.  

Or, explicitly, we see that first column on left (images of first 
point) give the translations.  After solving for these, we can 
solve for the each column of the s components of the 
motion using the images of each point, in turn.



Affine Structure-from-Motion: 
Two Frames (5)
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Once we know the motion, we can use the images of 
another point to solve for the structure.  We have four 
linear equations, with three unknowns.



Affine Structure-from-Motion: 
Two Frames (6)
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Suppose we just know where the k’th point is in image 1.

Then, we can use the first two equations to write xk and yk as linear in 
zk.  The final two equations lead to two linear equations in the 
missing values and zk.  If we eliminate zk we get one linear equation 
in the missing values.  This means the unknown point lies on a 
known line.  That is, we recover the epipolar constraint.  
Furthermore, these lines are all parallel.  



Affine Structure-from-Motion: 
Two Frames (7)
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But, what if the first four points aren’t so simple?

Then we define A so that:

This is always possible as long as the points 
aren’t coplanar.



Affine Structure-from-Motion: 
Two Frames (8)
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Then, 
given:

We have:

And:



Affine Structure-from-Motion: 
Two Frames (9)
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Then we just pretend that:

is our motion, 
and solve as 
before. 



Affine Structure-from-Motion: 
Two Frames (10)
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This means that we can never determine the exact 3D 
structure of the scene.  We can only determine it up to 
some transformation, A.  Since if a structure and motion 
explains the points:
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So does 
another of 
the form:



Affine Structure-from-Motion: 
Two Frames (11)
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Note that A has 
the form:

A corresponds to 
translation of the 
points, plus a 
linear 
transformation. 



For example, there is clearly a translational 
ambiguity in recovering the points.  We can’t 
tell the difference between two point sets that 
are identical up to a translation when we only 
see them after they undergo an unknown 
translation.  Similarly, there’s clearly a 
rotational ambiguity.  The rest of the ambiguity 
is a stretching in an unknown direction.



Let’s take an explicit example of this.  Suppose we have a cube with
vertices at: (0,0,0) (10,0,0), (0,0,10)…..  Suppose we transform this by 
rotating it by 45 degrees about the y axis.  Then the transformation matrix 
is: [sq2 0 –sq2 0; 0 1 0 0].  Now suppose instead we had a rectanguloid
with corners at (10, 0, 0) (11,0,0), (10, 0, 10) ….  We can transform this 
rectanguloid into the first cube by transforming it as: [10 0 0 -100; 0 1 0 0; 
0 0 1 0; 0 0 0 1].  Then we can apply [sq2 0 –sq2 0; 0 1 0 0] to the 
resulting cube, to generate the same image.  Or, we could have combined 
these two transformations into one:

[sq2 0 –sq2 0; 0 1 0 0]* [10 0 0 -100; 0 1 0 0; 0 0 1 0; 0 0 0 1]

= [10sq2 0 –sq2 0; 0 1 0 0]


