Structure-from-Motion

e Determining the 3-D structure of the world, and/or the
motion of a camera using a sequence of images
taken by a moving camera.

— Equivalently, we can think of the world as moving and the
camera as fixed.

» Like stereo, but the position of the camera isn’t
known (and it's more natural to use many images
with little motion between them, not just two with a lot
of motion).

— We may or may not assume we know the parameters of the
camera, such as its focal length.



Structure-from-Motion

* As with stereo, we can divide problem:
— Correspondence.
— Reconstruction.

« Again, we’ll talk about reconstruction
first.
— So for the next few classes we assume that

each image contains some points, and we
know which points match which.



Structure-from-Motion




Movie



Reconstruction

e A |lot harder than with stereo.

o Start with simpler case: scaled
orthographic projection (weak
perspective).

— Recall, in this we remove the z coordinate

and scale all x and y coordinates the same
amount.



Weak perspective (scaled
orthographic projection)

e |SSUe

— perspective effects,
but not over the / T A
scale of individual }% :
objects 1 — A &
4

— collect points into a
group at about the
same depth, then
divide each point by
the depth of its group

(Forsyth & Ponce)



Perspective -> Scaled
Orthographic
« Recall: (x,y,,z;) -> (Xi/z;, yi/z)
e letZ=(z,+z, + ...+Z.)/n
* Then, (X,Y,,z;) approx-> (x/Z, y/Z)



The Equation of Weak

Perspective
(X
(x,y,z) _ s(x,y) x)_(s 0 0 0)Y
y O s 0 0O)| Z
e s is constant for all points. 1)

 Parallel lines no longer converge, they remain
parallel.



Pros and Cons of These
Models

* Weak perspective much simpler math.
— Accurate when object is small and distant.
— Most useful for recognition.

* Pinhole perspective much more

accurate for scenes.
— Used In structure from motion.

 \When accuracy really matters, must
model real cameras.



First. Represent motion

 We'll talk about a fixed camera, and moving object.

o Key point: | Some matrix
Points s s, s t
no %) 57 [s S, S, ty]
P= Zi Zz - Z: The image
(1 1 1 (u u“j
V n

Then: |

S:)



Remember what this means.

* We are representing moving a set of points,
projecting them into the image, and scaling them.

e Matrix multiplication: take inner product between
each row of S and each point. First row of S
produces X coordinates, while second row produces
Y.

 Projection occurs because S has no third row.
* Translation occurs with tx and ty.
« Scaling can be encoded with a scale factor in S.

* The rest of S must be allowing the object to rotate.



Examples:

«S5=[s5,0,0,0;0,s,0,0]; Thisis just
projection, with scaling by s.

eS=]s, 0,0, s*tx; 0, s, 0, s*ty]; This is
translation by (tx,ty,something), projection,
and scaling.



Structure-from-Motion

e S encodes:
— Projection: only two lines
— Scaling, since S can have a scale factor.
— Translation, by tx/s and ty/s.
— Rotation:

| =P




Rotation

( )
r1,1 r1,2 r1,3 Represents a
3D rotation of
21 Tz Tas P the points in P.

J31 T2 T33)



First, look at 2D rotation

(easier)
Matri>§ R acts cosd  Sno
on points by R = |
rotating them. —-sing cosé

cosd sSné\x X, . . . X
-sin@ cos@\y, VY, A

* Also, RRT = Identity. R" is also a rotation
maitrix, in the opposite direction to R.



Why does multiplying points by R rotate them?

» Think of the rows of R as a new coordinate system.
Taking inner products of each points with these expresses
that point in that coordinate system.

» This means rows of R must be orthonormal vectors
(orthogonal unit vectors).

* Think of what happens to the points (1,0) and (0,1). They
go to (cos theta, -sin theta), and (sin theta, cos theta). They
remain orthonormal, and rotate clockwise by theta.

» Any other point, (a,b) can be thought of as a(1,0) +
b(0,1). R(a(1,0)+b(0,1) = Ra(1,0) + Ra(0,1) = aR(1,0) +
bR(0,1). Soit’s in the same position relative to the
rotated coordinates that it was in before rotation relative
to the X, y coordinates. That is, it's rotated.



Simple 3D Rotation

(cosfd snfd O\x x . . . X
-singd cosé Oy vy y
. 0 0 1Nz z Z

Rotation about z axis.

Rotates X,y coordinates. Leaves z coordinates fixed.



Full 3D Rotation

(cosfd singd 0
-9nd cos@é O

(cosf 0 sinf)
0 1 0

\—sin 0 cosg,

(1 0 0 )
O cosa 9Sna

0 —-sina cosa,

« Any rotation can be expressed as combination of three
rotations about three axes.

1 0 0)
0O 1 O
0 0 1,

RR

 Rows (and columns) of R are
orthonormal vectors.

* R has determinant 1 (not -1).



e Intuitively, it makes sense that 3D rotations can be
expressed as 3 separate rotations about fixed axes.
Rotations have 3 degrees of freedom; two describe an
axis of rotation, and one the amount.

» Rotations preserve the length of a vector, and the angle
between two vectors. Therefore, (1,0,0), (0,1,0), (0,0,1)
must be orthonormal after rotation. After rotation, they
are the three columns of R. So these columns must be
orthonormal vectors for R to be a rotation. Similarly, if
they are orthonormal vectors (with determinant 1) R will
have the effect of rotating (1,0,0), (0,1,0), (0,0,1). Same
reasoning as 2D tells us all other points rotate too.

 Note If R has determinant -1, then R is a rotation
plus a reflection.



Questions?



Putting 1t Together

Scale 3D Translation /"y [ r 0)
/1 O O tx\ 1,1 1,2 1,3
1 O O r21 r22 r23 O
O 1 Ot | | | P
010 “tr. r r O
Projection .0 0 O 1,
3D Rotation

(S“ S, S, Stxj

= P

SZ,l Sz,z Sz,a Sty
where We can just write st, as

t,and st as t,.
(Slyl 1 Sl,Z ! SlS) ° (Sz,l’ Sz,z ] Sz,e) — O

(s..s..8.)=|(s,,s..8.)|



Affine Structure from Motion

(s, s, s, t
| | | P
S, S, S, t,

2,1 2,2 2,3

VRENe
(S.,S.,S. T8 22,823):0
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Affine Structure-from-Motion:
Two Frames (1)

N < X




Affine Structure-from-Motion:

To make things
easy, suppose:

Two Frames (2)
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Affine Structure-from-Motion:
Two Frames (3)

1

< £ < c©

u, u, S, S, S, L)X X

v, V.I_|S. S, S, U]y Vv

u ul|s. s, s tlz z

v v s, s, s, {1 1
Looking at the first four points, we get:
Uououou) (s s s Y0 10 0
V.V Vv V| [s s s t]|00 10
uwowouwouwl s s, s, 0001
WV, v v v s, s, s, tt\1 111

P N <X




Affine Structure-from-Motion:
Two Frames (4)

‘v U u u) (s s, s tyo 1 0 0)
v. v v v| |s s, s, t]10010¢0
u u u u - S, s, t]j]0 0 0 1
WV, v v v \s s, s, t/A1 11 1,

We can solve for motion by inverting matrix of points.

Or, explicitly, we see that first column on left (images of first
point) give the translations. After solving for these, we can
solve for the each column of the s components of the
motion using the images of each point, in turn.



Affine Structure-from-Motion:
Two Frames (5)

‘u) (s s s t)x)

k 1,1 1,2 1,3
tl

)2 2,3 y K

u| |s s s t|z

k 1,1 1,2 '3 X k

)

Vv S S

k 2,1

V) \s, s, s, U1,

Once we know the motion, we can use the images of
another point to solve for the structure. We have four
linear equations, with three unknowns.



Affine Structure-from-Motion:
Two Frames (6)

Suppose we just know where the k’th point is in image 1.
‘) (s s stV x)
k 1,1 1,2 1,3 X k

1 1 1 1

Vk SZ,l SZ,Z 2,3 ty yk
? SZ SZ t2 Z
1,1 1,2 1,3 X k

f? 2 2 2 2
\ - / \Sz,l Sz,z Sz,s ty /\ 1)
Then, we can use the first two equations to write x, and y, as linear in
z,. The final two equations lead to two linear equations in the
missing values and z,. If we eliminate z, we get one linear equation
In the missing values. This means the unknown point lies on a

known line. That is, we recover the epipolar constraint.
Furthermore, these lines are all parallel.

n.

mI\.)




Affine Structure-from-Motion:
Two Frames (7)

But, what if the first four points aren’t so simple?

Then we define A so that:;

(X X x x) (0 1 0 0)
AY Yo Y Y 0010
zZ z 7 Z O 0 01
1 1 1 1) {1 1 1 1

This is always possible as long as the points
aren’t coplanatr.



Affine Structure-from-Motion:
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Affine Structure-from-Motion:
Two Frames (9)

u u u S, S, s, t 01 0O
_ V.V Vi s, s, s, U A 0O 01 0
Given: U vl ls s s t| o001
V'V v s, s, s, €U 1 1 1 1
Then we just pretend that:
/Sl Sl Sl tl\
1,1 1,2 1,3 X
! g g i IS our motion,
- - = IAT and solve as
2 2 2 2
S s, s before.

S, s, s, t

2,1 2,2 2,3

RN X< X




Affine Structure-from-Motion:
Two Frames (10)

This means that we can never determine the exact 3D
structure of the scene. We can only determine it up to
some transformation, A. Since If a structure and motion
explains the points:

u u u S, S, S, t)x X X

V. Vv V.i_|S. s, s, Uy Vv y

u o u ul s s s tlz z z
VoV A s, s, s, t{1 1 1
u-u u s. S. s, X X

So does v v vl |ls s s e vy
another of u-ou u’ ) s s sj; t’ A A z z
the form: VoV v s s st 1 1

N < X




Affine Structure-from-Motion:

Two Frames

< c < c
< € < C

:<N ::C,\, :‘<>—- :C»—l

Note that A has
the form:

A corresponds to
translation of the
points, plus a
linear
transformation.
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For example, there is clearly a translational
ambiguity in recovering the points. We can’t
tell the difference between two point sets that
are identical up to a translation when we only
see them after they undergo an unknown
translation. Similarly, there’s clearly a
rotational ambiguity. The rest of the ambiguity
IS a stretching in an unknown direction.



Let’s take an explicit example of this. Suppose we have a cube with
vertices at: (0,0,0) (10,0,0), (0,0,10)..... Suppose we transform this by
rotating it by 45 degrees about the y axis. Then the transformation matrix
Is: [sq2 0 —sg2 0; 0 1 0 0]. Now suppose instead we had a rectanguloid
with corners at (10, 0, 0) (11,0,0), (10, O, 10) .... We can transform this
rectanguloid into the first cube by transforming it as: [10 0 0 -100; 0 1 0 O;
0010;0001]). Thenwe can apply [sg2 0 -sqg2 0; 0 1 0 O] to the
resulting cube, to generate the same image. Or, we could have combined
these two transformations into one:

[sq20-sg20;0100]*[1000-100;0100;0010;0001]
=[10sg2 0 —sq2 0; 0 1 0 O]



