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More Histograms

• We’ll again use Histograms as 
probability distributions, but with some 
new wrinkles.

– Instead of comparing two distributions, we 
want to judge if a single sample comes 
from a distribution.

– Want to build a distribution from a 
histogram with few samples (~100 instead 
of ~10,000)

Background Subtraction

• Many images of same scene.

• A pixel is foreground or background.

• Many training examples of background.

• Classify pixels in new image
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The Problem

.

Look at each pixel individually

.
Then classify: 
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Just Subtract?

-
and threshold difference

10 80 120

Background isn’t static

1 2 3

4 10 100
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Probability Distribution for Pixels

• p(I(x,y)=k) for the probability that the 

pixel at (x,y) will have an intensity of k
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This tells us how to reach a conclusions using evidence, if we 

know the probability that the evidence would occur.

Probability (x,y) is background if intensity is 107?  Who knows?

Probability intensity is 107 if background?  We can measure.
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Bayes’ law cont’d
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If we have uniform prior for foreground pixel, then key is to 

find probability distribution for background.

Sample Distribution with 

Histogram

• Histogram: count # times each intensity 

appears.

• We estimate distribution from experience.

• If 1/100 of the time, background pixel is 17, 

then assume P(I(x,y)=17|B) = 1/100.

• May not be true, but best estimate.

• Requires Ergodicity, ie distribution doesn’t 

change over time.
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Sample Distribution Problems

• This estimate can be noisy.

Try: k=6; n=10; figure(1); hist(floor(k*rand(1,n)), 0:(k-1))

for different values of k and n.

• Need a lot of data.

Histogram of One Pixel 

Intensities
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Kernel Density Estimation

• Assume p(I(x,y)=k) similar for similar 

values of k. 

• So observation of k tells us a new 

observation at or near k is more likely.

• Equivalent to smoothing distribution.

(smoothing reduces noise)

KDE vs. Sample Distribution

• Suppose we have one observation

– Sample dist. says that event has prob. 1

• All other events have prob. 0

– KDE says there’s a smooth dist. with a 

peak at that event.

• Many observations just average what 

happens with one. 
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KDE cont’d

• To compute P(x,y)=k, for every sample 

we add something based on distance 

between sample and k.

• Let si be sample no. i of (x,y), N the 

number of samples, σ be a parameter.
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KDE for  Background Subtraction

• For each pixel, compute probability 

background would look like this.

• Then threshold.
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Naïve Subtraction With Model of Background 

Distribution

Background Subtraction
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KDE vs. Binning

• Previously, we use histogram directly to estimate 
distribution.

• If data is sparse we bin data uniformly or with K-
means.
– Eg., divide intensities into 0-15, 16-31, .

• This is almost like KDE using a box filter.
– 8 is treated like a uniform distribution from 0-15.

– But 15 is treated the same way.

• Binning is very fast, but KDE makes more sense.

• The same principle can apply in comparing sparse 
histograms.
– Eg, smooth histograms then compare with Chi-squared.


