
Linear Filtering

• About modifying pixels based on 
neighborhood.  Local methods simplest.

• Linear means linear combination of 
neighbors.  Linear methods simplest.

• Useful to:
– Integrate information over constant regions.
– Scale.
– Detect changes.

• Many nice slides taken from Bill Freeman.
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Correlation

Examples on white board – 1D

Examples -2D



For example, let’s take a vector like:

(1 2 3 2 3 2 1), and filter it with a filter like (1/3 1/3 1/3)

Ignoring the ends for the moment, we get a result like:

2 2 1/3  2 2/3 2 1/3 2.   We can also graph the results 
and see that the original vector is smoothed out.



Boundaries

• Zeros
• Repeat values
• Cycle
• Produce shorter result
• Examples



Correlation
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For this notation, we index F from –N to N.  



Convolution

• Like Correlation with Filter Reversed
• Associative
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Some Examples































Filtering to reduce noise

• Noise is what we’re not interested in.
– We’ll discuss simple, low-level noise today: 

Light fluctuations; Sensor noise; 
Quantization effects; Finite precision

– Not complex: shadows; extraneous 
objects.

• A pixel’s neighborhood contains 
information about its intensity.

• Averaging noise reduces its effect. 



Additive noise

• I = S + N.  Noise doesn’t depend on 
signal.

• We’ll consider: 
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Average  Filter
• Mask with positive 

entries, that sum 1.
• Replaces each pixel 

with an average of 
its neighborhood.

• If all weights are 
equal, it is called a 
BOX filter.
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Averaging Filter and noise 
reduction

• Example: try executing:
k=2; figure(1); hist(sum((1/k)*rand(k,1000)))
for different values of k.
• The average of noise is smaller than one example.

– This is intuitive
– Can be proven in many cases (some technical conditions: 

noise must be independent, many samples….)
– Actually true for many real examples: Gaussian noise, 

flipping a coin many times



Filtering reduces noise if signal 
stable

• Suppose I(i) = I+n(i), I(i+1) = I+n(i+1) 
I(i+2) = I+n(i+2).

• Average of I(i), I(i+1), I(i+2) = I + 
average of n(i), n(i+1), n(i+2).

• When there is no noise, averaging 
smooths the signal.

• So in real life, averaging does both.



Example: Smoothing by 
Averaging



Smoothing as Inference About 
the Signal

+ =

Nearby points tell more about the 
signal than distant ones.

Neighborhood for 
averaging.



Gaussian Averaging

• Rotationally 
symmetric.

• Weights nearby 
pixels more than 
distant ones.
– This makes sense 

as probabalistic 
inference.

• A Gaussian gives a 
good model of a fuzzy 
blob



An Isotropic Gaussian
• The picture shows a 

smoothing kernel 
proportional to            

(which is a reasonable 
model of a circularly 
symmetric fuzzy 
blob)
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Building a Filter from a 
Continuous Function

•Take a function

•Sample at integer 
positions.

•Sample values 
significantly more than 
zero.

•Normalize values

•With averaging, 
you want to be 
sure that elements 
of filter sum to one.



Smoothing with a Gaussian



The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
different realizations of 
an image of gaussian noise.

(Forsyth and Ponce)



Efficient Implementation

• Both, the BOX filter and the Gaussian 
filter are separable:
– First convolve each row with a 1D filter
– Then convolve each column with a 1D 

filter.



Box Filter
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Gaussian Filter
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Smoothing as Inference About 
the Signal: Non-linear Filters.
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What’s the best 
neighborhood for 
inference?
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