
Review for Final 
CMSC 426 – Spring 2010 
 
General comments 
 
There are five key technical ideas in this class.  The goal of the class is for you to master 
these ideas and to see how they can be used to solve problems in vision.  So hopefully the 
final exam will test both your understanding of basic problems in vision and your mastery 
of these techniques, and how they can be used to solve vision problems. Below is an 
outline of the class.  I’m including some sample problems that you can work if you want 
practice on some of these problems.  The practice problems from the midterm are also 
appropriate. 
 
Correlation/Convolution and Multiscale 
 
The first key idea of the course is to understand correlation and convolution.   

1. You should understand how to perform these operations.   
2. You should also understand some of their basic properties.  Convolution is 

associative, and this will allow you to combine operations, or sometimes to split 
operations.  For example, we can combine smoothing and a derivative filter into 
one operation.  Or we can break smoothing with a box filter into two convolutions 
with smaller, 1D filters. 

3. You should know how to construct a filter so that you can use convolution and 
correlation to perform a few different operations, including smoothing an image 
or taking a derivative. 

4. You should understand how to construct and use multiscale representations of 
images.  You should understand that we smooth images before shrinking them to 
avoid aliasing.  You should understand how to detect blobs as local extrema in 
images as they are smoothed. 

5. * The Fourier series representation of functions might figure in a challenge 
problem. 

 
SAMPLE PROBLEMS 
 
  1) Compute the convolution of the 1D image:   (0,0,1,1,2,2,3,3,4,4,4,4) with the 
convolution kernel: (1/4,1/2,1/4).  Treat the boundary in any reasonable way. 
 
2) Suppose I convolve an image first with the filter [1; 0; -1] and then with the filter [-1 

0 1].  Give a single, 2D filter that will accomplish the same thing.  What is the 
mathematical operation this filter approximates? 

 
The Image Gradient 
 
The image gradient is perhaps the most fundamental way we have of representing 
images.  It captures how the image changes.  You should understand: 

1. How to compute the gradient. 



2. Given a gradient, find the magnitude and direction of the gradient. 
3. Use the gradient to find boundaries.  This includes understanding whether a 

gradient is a local maximum in the direction of the gradient (eg., Canny edge 
detection).   

4. Use the gradient and the temporal derivative of an image to compute the 
optical flow. 

 
SAMPLE PROBLEMS 
 

  1) Consider the following 1D image: 
   (0 0 …. 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 10 10 10  0 0 0 0 …) 
Where would you expect a 1D edge detector to find edges? 
  An edge detector has a parameter that allows it to ignore weak edges.  As we 
increase this parameter, which edges disappear first? 
  If we smooth the image before detecting edges, how would you expect this to 
affect the position and number of the edges? 

 
 2) For the point 16, in bold face, find the gradient.  Give the direction and 
magnitude of the gradient. 

 
5 8 11 14 17 20 
6 9 12 15 18 21 
7 10 13 16 19 22 
8 11 14 17 20 23 
9 12 15 18 21 24 
10 13 16 19 22 25 
 

3) I is an image described by the equation I(x,y) = x*x + y*y.  J is the same 
image translated 1 pixel in the positive x direction.  Suppose I and J are 
consecutive images in a motion sequence.  Write the optical flow equation in 
its general form.  Using this equation, give the equation for a line in the 
second image on which we expect to find the point that was at (5,5) in the first 
image.  Perform the same computation for a point at (5,0).  Combine these 
two equations, and show that this yields the translation of the image. 

 
Histograms and Statistical Modeling 
 
We have looked a lot at histograms.  You should realize that when we normalize a 
histogram so that it sums to one, we can treat it as a probability distribution.   
There are two key parts to probabilistic modeling.  First, you must use some prior 
knowledge to construct a statistical model.  Second, you must use this model, typically to 
compare distributions, classify new data or to generate new examples.   

1. Building statistical models 
a. Given some independent samples, use a histogram to build a distribution 

for them. 



b. Kernel Density Estimation: We can smooth a histogram to get a less noisy 
estimate of the distribution. 

c. Given some samples, construct a Markov model of the data.  While there 
are more sophisticated ways of doing this, we have discussed the approach 
of using previous examples for your Markov model. 

d. Two particularly relevant examples of histograms are histograms of image 
intensities, and SIFT descriptors.  You should be familiar with these.  You 
should also know about histogram equalization. 

2. Comparing distributions using: 
a. SSD 
b. Chi-Squared 

3. Classifying new examples: in background subtraction, we classify a pixel as 
foreground or background. 

4. Generating new examples: in texture synthesis, we generate new samples from a 
Markov model. 

 
SAMPLE PROBLEMS 

 
1 Suppose we are performing background subtraction.  For one particular pixel, we 

see the following intensities:  1 1 2 2  3 3 3 3 1 1 2 2 3 3 3 3 1 1….  If we use a 
histogram of these values and no Gaussian smoothing what would you estimate is 
the probability that the next pixel would have an intensity of 2?   

2 Suppose we use a Markov model, and estimate the probability of a pixel based on 
the intensity of the previous pixel.  If the last pixel had an intensity of 2, what 
would you estimate is the probability that the next pixel will have an intensity of 
2?  Of 3?  Of 1? 

3 Consider the following statement:  “When performing background subtraction 
with kernel density estimation, we should use a smaller and smaller value for 
sigma as the size of our training set increases.”  Do you think this is true?  Why or 
why not? 

 
 
Optimization 
 
Optimization is a very large area.  There is a wide array of optimization methods that 
have been applied to vision problems.  You should understand the few of these methods 
that we have studied, and how they can be used to solve vision problems. 

1. Structure of optimization 
a. Define a set of possible solutions. 
b. Define a cost function that defines the value of each solution. 
c. Find a search algorithm for exploring solutions, picking the best one 

found. 
2. Optimization methods 

a. Brute-force search.  For many problems, at least as a baseline, the starting 
point is to try every possible solution. 

b. Shortest path algorithm. 



c. Dynamic Programming. 
d. K-means algorithm. 
e. RANSAC 

3. Applications 
a. Finding boundaries. 
b. Clustering pixels. 
c. Stereo matching 
d. Image matching and Mosaicing. 

 
SAMPLE PROBLEMS 
 

1. Kmeans: Suppose we have points at the locations: (1,3) (4,7) (2,9) (2,2) (3,6), 
and we pick centers at (1,4)  (4,4).  Which points will be assigned to each center?  
What will be the location of the new centers? 
 
Suppose we have five points and two centers, as above.  Place an upper bound on 
the number of possible iterations that k-means can perform before it converges. 
 
2. Suppose we are performing stereo matching, and we want to add a penalty, D, 
which we have to pay whenever there are any changes in disparity.  Explain how 
this would change the dynamic programming stereo algorithm. 

 
 
3D Geometry 
 
This all comes down to forming linear subspaces and intersecting them.  For example, 
given two points, find the line that they form.  Or given three points, find the plane that 
they form.  Or intersect a line with a plane, or two planes to find a line.  With these tools, 
we can solve a variety of problems: 
 

1. Perspective Projection: form a line from two points and intersect it with an image 
plane. 

2. Locating a 3D point from its appearance in a 2D image: form a line from two 
points and intersect it with any other possible constraint. 

3. Locating a 3D point from its appearance in two 2D images (stereo): form a line 
from two points twice, and intersect these lines.  For a standard stereo set-up, this 
can be solved more simply using similar triangles. 

4. Motion Flow.  You should understand possible flow patterns for simple motions. 
5. Epipolar geometry:  

a. Given a point in a 2D image, delimit its possible location in a second 
image (the epipolar constraint): form a plane with three points (two focal 
points and an image point) and intersect it with an image plane.   

b. You should also understand how to find the epipole, by forming a line 
between the two focal points and intersecting this with an image plane. 

6. Image rectification: project an image plane onto a new image plane. 
7. 2D Image Transformations using a Matrix 



a. Represent a 2D point as a vector. 
b. Represent a 2D translation using a matrix. 
c. Represent scaling using a matrix. 
d. Rotations are a bit more complicated.  To be more explicit, you should 

know how to: 
i. Represent a rotation with a matrix. 

ii. Determine whether a matrix represents a rotation. 
e. Represent a 2D affine transformation 

 
 
SAMPLE PROBLEMS 
 
  1) If using perspective projection, how can you tell whether a line in the world will 
project to a single point in the image? 
 
  2)  Consider a camera in the standard position for perspective, with the image plane the 
z=1 plane, and the focal point at the origin.  Consider a rectangle with corners at: (0,0,2), 
(1,1,2), (0,0,3), (1,1,3).  Give its image with perspective projection.  Prove that parallel 
lines in the world don’t necessarily project to parallel image lines.   
 
3) Suppose we have two parallel lines.  One goes through (0,0,2) to (0,0,3) and the other 
through (1,0,2) to (1,0,3).  What will be their vanishing point?   
 
Equations 
 
There are a few equations that are so important you should know them by heart, and 
understand how to use them.  These include: 
 

 

  
 
CONVOLUTION: 

 
 



 
 

First order Markov Model:  
 
Translation, rotation and similarity transformation matrices 
 
Perspective Projection 
 
Disparity  
 
 


