Fourier Transform

- Analytic geometry gives a coordinate system for describing geometric objects.
- Fourier transform gives a coordinate system for functions.

Basis

- P=(x,y) means P=x(1,0)+y(0,1)
- Similarly:

$$f(\theta) = a_{11} \cos(\theta) + a_{12} \sin(\theta) + a_{21} \cos(2\theta) + a_{22} \sin(2\theta) + \dots$$

Note, I'm showing non-standard basis, these are from basis using complex functions.

Orthonormal Basis

- ||(1,0)||=||(0,1)||=1
- (1,0).(0,1)=0
- · Similarly we use normal basis elements eg:

$$\frac{\cos(\theta)}{\|\cos(\theta)\|} \quad \|\cos(\theta)\| = \sqrt{\int_{0}^{2\pi} \cos^{2}\theta \, d\theta}$$

• While, eg:

$$\int_{0}^{2\pi} \cos\theta \sin\theta \ d\theta = 0 \qquad \int_{0}^{2\pi} \cos\theta \cos 2\theta \ d\theta = 0$$

Coordinates with Inner Products

$$x = (x, y) \bullet (1,0)$$
 $y = (x, y) \bullet (0,1)$
 $(x, y) = x(1,0) + y(0,1)$

$$a_{i,1} = \int_{0}^{2\pi} f * \frac{\cos i\theta}{\|\cos i\theta\|} d\theta \quad a_{i,2} = \int_{0}^{2\pi} f * \frac{\sin i\theta}{\|\sin i\theta\|} d\theta$$

$$f = \sum a_{i,1} \frac{\cos i\theta}{\|\cos i\theta\|} + \sum a_{i,2} \frac{\sin i\theta}{\|\sin i\theta\|}$$

Convolution Theorem

$$f \otimes g = T^{-1}F * G$$

• F,G are transform of f,g

That is, *F* contains coefficients, when we write *f* as linear combinations of harmonic basis.

This says convolution is equivalent to multiplication in the transform domain.

Examples

$$\cos\theta \otimes \cos\theta = ?$$

$$\cos\theta \otimes \cos 2\theta = ?$$

$$\cos\theta \otimes f = ?$$

$$(\cos\theta + .2\cos 2\theta + .1\cos 3\theta) \otimes f = ?$$

Examples

- Transform of box filter is sinc.
- Transform of Gaussian is Gaussian.

Implications

- Smoothing means removing high frequencies.
 - One definition of smooth is low-frequency.
 - This is also one definition of scale.
- Sinc function explains artifacts.
- Need smoothing before subsampling to avoid aliasing.

Every sample gives a linear equation in $a_{i,j}$. Need two samples for every frequency.