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Fourier Transform

• Analytic geometry gives a coordinate 
system for describing geometric objects.

• Fourier transform gives a coordinate 
system for functions.

Basis

• P=(x,y) means P = x(1,0)+y(0,1)

• Similarly: 
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Note, I’m showing non-standard basis, these 

are from basis using complex functions.
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Image from Computer Graphics: Principles and Practice 

by Foley, van Dam, Feiner, and Hughes

Orthonormal Basis

• ||(1,0)||=||(0,1)||=1

• (1,0).(0,1)=0

• Similarly we use normal basis elements eg:

• While, eg:
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Coordinates with Inner Products
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2D Example
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Convolution Theorem

GFTgf *1−=⊗
• F,G are transform of f,g 

That is, F contains coefficients, when 
we write f as linear combinations of 
harmonic basis.

This says convolution is equivalent to 
multiplication in the transform domain.

Examples
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Examples

• Transform of 
box filter is 
sinc.

• Transform of 
Gaussian is 
Gaussian.

(Trucco and Verri)

Implications

• Smoothing means removing high 
frequencies.  
– One definition of smooth is low-frequency.

– This is also one definition of scale.

• Sinc function explains artifacts.

• Need smoothing before subsampling to 
avoid aliasing.
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Example: Smoothing by 
Averaging

Smoothing with a Gaussian
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Sampling

Every sample gives a linear equation in ai,j.

Need two samples for every frequency.


