Perceptual Grouping

• Reading:

- Chapter from Palmer
- Article by Julesz
- Optional: look up article by Kanizsa

Perceptual Grouping

- Perceptual grouping is about putting parts together into a whole:
 - Finding regions with a uniform property
 - Linking edges into object boundaries
 Surfaces and objects are critical.
 - Also, simpler ``objects'' such as lines

Gestalt Principles of Grouping: some history

- Behaviorists were dominant psychological theorists in early 20th century.
 - To make psych scientific, wanted to view it as rules describing relation between stimulus and response, described as atomic elements.
 - No role for "mind".
 - This meant no role for internal processing/inference/algorithms.
 - Influential early behaviorist was Pavlov

• Gestalt movement claimed atomic stimulus and response don't exist.

-The mind perceives world as objects, as wholes, not as atomic primitives.

- Can't understand psych without understanding how we perceive the world.

I stand at the window and see a house, trees, sky.

Theoretically I might say there were 327 brightnesses and nuances of colour. Do I *have* "327"? No. I have sky, house, and trees. It is impossible to achieve "327 " as such. And yet even though such droll calculation were possible and implied, say, for the house 120, the trees 90, the sky 117 -- I should at least have *this* arrangement and division of the total, and not, say, 127 and 100 and 100; or 150 and 177.

Max Wertheimer, 1923

I. A row of dots is presented upon a homogeneous ground. The alternate intervals are 3 mm. and 12 mm.

Normally this row will be seen as *ab/cd*, not as *a/bc/de*. As a matter of fact it is for most people impossible to see the whole series simultaneously in the latter grouping.

Max Wertheimer

Convexity (stronger than symmetry?)

Other Factors Common fate (ie., common motion). Good continuation in time. Parallelism Collinearity

How well do these theories explain the data?

- They can handle a lot.
 - Good continuation, symmetry, closure, common motion.
 - But there are some problems.

- Hard to explain this with good form.
- But could say convex shapes are more likely.

