
CMSC 426 Problem Set 2

Lorin Hochstein - 016843860

March 3, 2003

1 Convolution with Gaussian

Claim Let g(t, σ2) be a Gaussian kernel, i.e.

g(t, σ2) =
1√

2πσ2
exp

(
− t2

2σ2

)
Then for any function x(t),

g(t, σ2
1) ∗ g(t, σ2

1) ∗ x(t) = g(t, σ2
2) ∗ x(t)

where σ2
2 > σ2

1.
Proof

g(t, σ2) ∗ g(t, σ2) ∗ x(t) = g(t, σ2) ∗
(
g(t, σ2) ∗ x(t)

)
= g(t, σ2) ∗

∫ ∞
−∞

g(t− τ1)x(τ1)dτ1

=
∫ ∞
−∞

g(t− τ2, σ
2)
(∫ ∞
−∞

g(τ2 − τ1)x(τ1)dτ1

)
dτ2

=
∫ ∞
−∞

(∫ ∞
−∞

g(t− τ2, σ
2)g(τ2 − τ1, σ

2)dτ2

)
x(τ1)dτ1

=
∫ ∞
−∞

(∫ ∞
−∞

1√
2πσ2

exp

(
−(t− τ2)

2

2σ2

)
1√

2πσ2
exp

(
−(τ2 − τ1)

2

2σ2

)
dτ2

)
x(τ1)dτ1

=
1

2πσ2

∫ ∞
−∞

(∫ ∞
−∞

exp

[
− 1

2σ2

[
(t− τ2)2 + (τ2 − τ1)2

]])
x(τ1)dτ1

=
1

2πσ2

∫ ∞
−∞

(∫ ∞
−∞

exp
[
− 1

2σ2
(t2 − 2tτ2 + τ2

2 + τ2
2 − 2τ2τ1 + τ2

1)
]

dτ2

)
x(τ1)dτ1

1

=
1

2πσ2

∫ ∞
−∞

(∫ ∞
−∞

exp

[
− 1

2σ2
(2τ2

2 − 2tτ2 − 2τ2τ1)
]

dτ2

)
exp

[
− 1

2σ2
(t2 + τ2

1)
]

x(τ1)dτ1

=
1

2πσ2

∫ ∞
−∞

(∫ ∞
−∞

exp

[
−1

2

(
2
σ2

)
τ2
2 +

(
t + τ1

σ2

)
τ2

]
dτ2

)
exp

[
− 1

2σ2
(t2 + τ2

1)
]

x(τ1)dτ1

For the inner integral, we can use the identity:
∫∞
−∞ exp(−1

2Ax2+Zx)dx =
√

2π
A exp(Z2

2A).

=
1

2πσ2

∫ ∞
−∞

√
2π
2
σ2

exp

[(
t + τ1

σ2

)2

/

(
4
σ2

)]
exp

[
− 1

2σ2
(t2 + τ2

1)
]

x(τ1)dτ1

=
1√

4πσ2

∫ ∞
−∞

exp

[
(t + τ1)2

4σ2
− t2 + τ2

1

2σ2

]
x(τ1)dτ1

=
1√

4πσ2

∫ ∞
−∞

exp

[
t2 + 2tτ1 + τ2

1

4σ2
− 2t2 + 2τ2

1

4σ2

]
x(τ1)dτ1

=
1√

4πσ2

∫ ∞
−∞

exp

[
− 1

4σ2
(t2 − 2tτ1 + τ2

1)
]

x(τ1)dτ1

=
∫ ∞
−∞

1√
2π(2σ2)

exp

(
−(t− τ1)

2

2(2σ2)

)
x(τ1)dτ1

= g(t, 2σ2) ∗ x(t)

2 1D edge detection

(a) Gaussian kernel

We can generate a Gaussian kernel simply by sampling the Gaussian function. We sample
it at intervals of 1 unit. Figure 1 shows a Gaussian pulse and the samples.

The width of the Gaussian kernel will depend upon the standard deviation, σ. The
larger σ is, the larger the kernel must be to capture 99% of the area. It turns out that a
filter of size (5.2σ)+1 tends to have just over 99% of the area, at least for σ < 25. Figure 2
shows the area under the Gaussian pulse (without normalization) if we use our scheme, for
σ < 25. Just to make sure, we capture enough area, we can always check and see if the sum
of the elements is greater than 0.99. If not, we just increase the length and try again.

The code to generate the kernel is in file gauss.m. Figure 3 shows a plot of the kernel
for σ = 2.

Below is the source code for gauss.m.

2

−8 −6 −4 −2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 1: Sampling a Gaussian pulse

0 5 10 15 20 25
0.99

0.995

1

1.005

1.01

1.015

σ

S
um

 o
f G

au
ss

ia
n

Figure 2: Area under the Gaussian pulse

3

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

x

y

Figure 3: Gaussian kernel, σ = 2

Listing 1: gauss.m
function y = gauss (sigma , k)
% GAUSS genera te a Gaussian ke rne l
% Y = GAUSS(SIGMA,K) genera t e s a Gaussian ke rne l wi th s tandard d e v i a t i on
% SIGMA. K i s an op t i ona l parameter which i s used to he l p determine the
% s i z e o f the k e rne l .
%
% Note t ha t the genera ted k e rne l w i l l a lways be o f odd l en g t h
%
i f nargin == 1

k = 2 . 6 ;
end

i f sigma == 0
y = [1] ;
return

end

% We need to guess a good va lue f o r the number o f po in t s .
% Some s imple exper iments show tha t 2 . 6∗ sigma w i l l r e s u l t in
% a pu l s e t ha t cap tures 99% , wi thout making i t l a r g e r than necessary .
% We a l s o loop to make sure t ha t the sum i s l a r g e enough .

n = max(1 ,round(k∗ sigma)) ;

s = 0 ;
while s <0.99

x = (−n) : n ;

4

y = (1/ sqrt (2∗pi∗ sigma ˆ 2)) ∗ exp(−(x . ˆ 2) / (2 ∗ sigma ˆ 2)) ;
s = sum(y) ;
n = round(n ∗ 1 . 1) ; % increase n f o r next i t e r a t i o n

end

y = y / s ;

(b) Convolution

The formula for convolution is:

y[n] =
∑

x[k]h[n− k]

Matlab has a built-in conv function that does convolution, padding the boundaries with
zeros. However, this function increases the size of the signal by (length of the kernel) - 1.
We will implement convolution here by reimplementing the conv function and truncating
the output on each side so that it is the same size as the input. This truncation only works
properly if the kernel is of odd length (otherwise, the output signal will be an odd number
of pixels larger than the even signal and truncation becomes more complicated). So our
convolution function restricts kernels to be of odd length. This function is implemented in
the file myconv.m, listed below. Note that this implementation is quite slow because of the
use of for loops.

Listing 2: myconv.m
function y = myconv(x , h)
% MYCONV convo lu t i on
% Y = MYCONV(X,H) convo l ve s v e c t o r s X and H. The r e s u l t i n g
% vec to r i s l e n g t h LENGTH(X) , assuming t ha t H i s o f odd l en g t h
% (otherwise , i t w i l l not perform the convo lu t i on)

i f mod(length (h) ,2) == 0
error (’kernel must be of odd length’)

end

N = length (x)+length (h)−1;
y = zeros (1 ,N) ;

% This i s the convo lu t i on a lgor i thm , which i s what conv does
% y = conv (x , h) ;
%
% Note : t h i s implementat ion i s very s low because i t doesn ’ t use v e c t o r s
for n=1:N

for k=1: length (x)
i f ((n−k+1)>=1) & (k <= length (x)) & (n−k+1)<=length (h)

y (n) = y(n) + x(k) ∗ h(n − k + 1) ;
end

end
end

5

% Make the output the same s i z e as the input
y = y ((length (h) −1)/2 + 1 : end − (length (h) −1)/2) ;

Figure 4 shows the Gaussian kernel convoluted with itself two times and three times
(i.e. g(n) ∗ g(n) ∗ g(n)) and g(n) ∗ g(n) ∗ g(n) ∗ g(n)).

Note how both signals have the same shape, but the second Gaussian pulse is lower and
wider than the first (i.e. its variance is higher). The source code to compute these figures
is from file two b.m, shown below.

Listing 3: two b.m
g = gauss (2) ;
g1 = myconv(g , g) ;
g2 = myconv(g1 , g) ;
g3 = myconv(g2 , g) ;

f igure ;
subplot (2 , 1 , 1)
stem(g2)
grid on
xlabel (’x’)
ylabel (’y’)
t i t l e (’Gaussian convolved with itself two times’) ;
axis ([0 1 2 0 . 1 5])

subplot (2 , 1 , 2)
stem(g3)
grid on
xlabel (’x’)
ylabel (’y’)
t i t l e (’Gaussian convolved with itself three times’) ;
axis ([0 1 2 0 . 1 5])

print −deps 2b

(c) 1D edge detector

We construct an edge detector as mentioned in class, generating a kernel by convolving a
Gaussian pulse with a first derivative approximation [−1, 0, 1], convolving this new kernel
with the signal, and then comparing the result against the threshold to locate the locations
in the signal with the highest rate of change. Our edge detector has been implemented in
the file find edges.m, shown below

Listing 4: find edges.m
function e = f i nd edg e s (x , s , t)
% FIND EDGES f i nd edges in a 1D s i g n a l
% E = FIND EDGES(X, S ,T) l o c a t e s the edges in the s i g n a l X, us ing a
% Gaussian ke rne l f o r smoothing wi th standard d e v i a t i on S , and a
% th r e s h o l d T fo r the s t r en g t h o f the edge . E i s a vec to r which conta ins
% the indexes which conta in edges in X.

6

0 2 4 6 8 10 12
0

0.05

0.1

x

y
Gaussian convolved with itself two times

0 2 4 6 8 10 12
0

0.05

0.1

x

y

Gaussian convolved with itself three times

Figure 4: Convolution 2 and 3 times with Gaussian kernel, σ = 2

g = gauss (s) ;

% Generate the k e rne l by combining a Gaussian f i l t e r and a f i r s t d e r i v a t i v e
% opera tor . Use b u i l t−in conv because we don ’ t care about k e rne l l e n g t h
% inc r ea s in g
k = conv (g , [1 0 − 1]) ;

% Apply the k e rne l and take the a b s o l u t e va lue
y = abs (myconv(x , k)) ;

% Threshold y and conver t to indexes to f i nd cand ida te s po in t s f o r peaks
cand idate s = find (y>=t) ;

e = [] ;
% Check each candida te to make sure i t ’ s a l o c a l max . Don ’ t cons ider
% borders f o r edges
for c=cand idate s

i f (c >1) & (c<length (y)) & (y (c)>=y(c−1)) & y(c)>y (c+1)
e (end+1) = c ;

end
end

We test our edge detector by applying it to signal I.
If we apply our edge detector with no smoothing and a threshold of 0.5, we get the

following result:

>> I = [zeros (1 , 5 0) , . 9∗ ones (1 , 10) , zeros (1 , 1 0) , . 6∗ ones (1 , 40) , zeros (1 , 5 0)] ;
>> e = f i nd edg e s (I , 0 , . 5)

7

e =

51 61 71 111

The image is shown in Figure 5. The circles in Figure 5 indicate the locations where
our edge detector found edges.

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 5: A 1D signal with sharp edges

(d) Smoothing

In this section, we show how well our edge detection algorithm works under Gaussian
smoothing, in the absence of noise. Figure 6 shows how the location of detected edges
varies with the standard deviation of the Gaussian kernel. Since there is no noise, we use a
very low threshold of .01.

One of the edges begin to drift somewhat around σ = 2. However, performance is still
fairly good until around σ = 8, when one of the edges is no longer detected.

The Matlab file two d.m which generated this diagram is shown below.

Listing 5: two d.m
I = [zeros (1 , 5 0) , . 9∗ ones (1 , 10) , zeros (1 , 1 0) , . 6∗ ones (1 , 40) , zeros (1 , 5 0)] ;
thresh = . 0 1 ;

n = 1 ;

f igure

for s = . 5 : . 5 : 2 5

8

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

edge location

σ

Figure 6: How edge location varies with σ

e = f i nd edg e s (I , s , thre sh) ;
plot (e , s ∗ ones (s ize (e)) , ’x’)
hold on
n = n + 1;

end

axis ([0 1 6 0 0 3 0])
xlabel (’edge location’)
ylabel (’\sigma’)

print −deps 2d

(e) Noise

Now we add noise to the input signal to see how robust our edge detection algorithm is.
Figure 7 shows our input signal once white Gaussian noise has been added.

In this case, we must use a larger threshold otherwise we will detect many spurious
edges due to the noise. Figure 8 shows how the detected edge locations vary with σ under
the presence of noise. Note that at very low values of σ, many false edges are detected.
Only in the approximate range of 6 < σ < 7 do we get the 4 edges detected.

The source code for this section is from file two e.m, listed below.

Listing 6: two e.m
I = [zeros (1 , 50) , 9∗ ones (1 , 10) , zeros (1 , 10) , 3∗ ones (1 , 40) , zeros (1 , 5 0)] ;
NI = I + randn(s ize (I)) ;

f igure ;

9

0 20 40 60 80 100 120 140 160
−4

−2

0

2

4

6

8

10

12

x

y

Figure 7: Signal corrupted with Gaussian noise

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

edge location

σ

Figure 8: How edge location varies with σ, with Gaussian noise

10

sta irs (NI)
xlabel (’x’)
ylabel (’y’)

print −deps no i sy

thresh = . 1 ;

n = 1 ;

f igure

for s = . 5 : . 5 : 2 5
e = f i nd edg e s (NI , s , thre sh) ;
plot (e , s ∗ ones (s ize (e)) , ’x’)
hold on
n = n + 1;

end

axis ([0 1 6 0 0 3 0])
xlabel (’edge location’)
ylabel (’\sigma’)

print −deps 2 e

3 2D edge detection

We begin by trying to do edge detection on a relatively simple image. Figure 9 shows a
photograph of the Maryland state flag. It should be easy to detect the boundaries of the
shapes in this flag because they are so clearly delineated.

If we run a Canny edge detector algorithm on this image, with the default parameters,
we get the result of Figure 10.

With the default parameters, the edge detector performs fairly well, but not optimally.
We can improve performance by altering the parameters. Figure 11 shows the results with a
better set of parameters (thresh = [.095, .12], σ = .1). The circled areas or those where the
edge detector found a false edge. In both these areas, the flag is slightly wrinkled (i.e. the
orientation of the surface changes rapidly). This rapid change in surface orientation results
in sharp changes of lighting across these two patches of flag. This causes the detector to
falsely classify the wrinkles as edges.

Figure 12 shows a picture of a camel in the desert. This is clearly a much more difficult
problem. Both the camel’s skin and the background are much more complex surfaces than
the Maryland flag. Also, because of the camel’s hair, the edges of the camel are not so well
defined.

The Canny edge detector does very poorly with the default parameters. The results can
be seen in Figure 13.

We can improve the performance greatly by altering the parameters. The best perfor-
mance we could achieve is shown in Figure 14. The diagram shows two locations where the

11

Figure 9: Maryland flag

Figure 10: Canny edge detector, default parameters (thresh=[.02, .1], σ = 1)

12

Figure 11: Canny edge detector, best results (thresh=[.095, .12], σ = 1)

Figure 12: Camel

13

Figure 13: Canny edge detector, default parameters (thresh=[.02, .1], σ = 1)

edge detector made errors, although there are others. In the bottom-left area, the detector
failed to locate an edge. If we look at the original picture, we see that there is not much
difference in color intensity between the camel’s hair and the road in this area. On the
camel’s hump, a spurious edge is detected. This seems to be due to the shadow cast by the
camel’s hump. When the shadow ends, there is an abrupt change in light intensity, and the
detector falsely classfies this as an edge.

14

Figure 14: Canny edge detector, best results (thresh=[.1, .35], σ = 3.5)

4 Challenge problem

We will define the kernel k as centered around the point θ = π, i.e.

k(θ) = 1, |π − θ| ≤ m

If we repeat k periodically (with period 2π), then we can represent it as a linear com-
bination of sinusoids. Note that such a function is even. Since sine functions are odd,
and cosine functions are even, k can be expressed purely as a sum of cosine terms (plus a
constant term), i.e.

k(θ) =
∞∑

n=0

an

(
cos(nθ)

|| cos(nθ)||

)
where || cos(nθ)|| is defined as follows:

|| cos(nθ)|| =
√
〈cos(nθ), cos(nθ)〉 =

√∫ 2π

0
cos2(nθ)dθ

=

√
1
2

∫ 2π

0
(1 + cos(2nθ))dθ =

√
1
2

(∫ 2π

0
dθ +

∫ 2π

0
cos(2nθ)dθ

)

15

=

√
1
2
(2π + 0) =

√
π

For the case when n=0, we have:√∫ 2π

0
dθ =

√
2π

Note that the basis elements are orthogonal, i.e.

〈cos(nθ), cos(mθ)〉 = 0, n 6= m

This implies that 〈k(θ), 1√
π

cos(nθ)〉 = an which gives us a formula for computing an.

an =
∫ 2π

0
k(θ)

cos(nθ)√
π

dθ =
1√
π

∫ π+m

π−m
cos(nθ)dθ =

[
1√
πn

sin(nθ)
]π+m

π−m

=
1√
πn

[sin(nπ + nm)− sin(nπ − nm)]

=
1√
πn

[sin(nπ) cos(nm) + cos(nπ) sin(nm)− sin(nπ) cos(nm) + cos(nπ) sin(nm)]

=
2√
πn

cos(nπ) sin(nm) =
2√
πn

(−1)n sin(nm)

For a0, we have:

a0 =
1√
2π

∫ 2π

0
k(θ)dθ =

1√
2π

∫ π+m

π−m
dθ =

2m√
2π

Therefore, we can represent the kernel as:

k(θ) =
2m√
2π

+
∞∑

n=1

2√
πn

(−1)n sin(nm)
(

cos(nθ)√
π

)

16

