1. Ransac
a) 

function line = gen_line(pt1, pt2)

if sum(pt1 == pt2) == 2

    return ;

end

A = [ pt1 ; pt2 ] ;

if det(A) ~= 0

    sol = A \ [-1 ; -1] ; % Solution of ax + by +1 = 0 

    sol = [sol' 1] ;

else

    if sum(pt1 == [0 0]) == 2 || sum(pt2 == [0 0]) == 2

        sol = [pt1(2) + pt2(2) , -pt1(1)-pt2(1), 0] ;

    else

        sol = [pt2(2) - pt1(2) , pt1(1) - pt2(1), (pt2(1) - pt1(1)) * (pt1(2)-pt1(1))] ;

    end    

end

r = sqrt(sol(1)^2 + sol(2)^2) ;

line = [] ; line = [line, sol(1) / r ] ;  line = [line, sol(2) / r ] ; line = [line, sol(3) / r ] ;
b) 

function dist = line_dist(L, pt)

  dist = abs(L * [pt 1]')  % I assumed the line data is coming from a)
c) 

  i)

  The line equation that formed by (0,1) and (2,1) is y = 1 so the length should be 1

  ii)

  The line equation that formed by (1,1) and (3,2) is 

  y -1 = ½ (x-1)  

  the line that passes (7,4) and is perpendicular to the line above,

  y – 4 = -2(x-7)

 The intersection point of these two lines is

  ½ (x+1) = -2(x-9)
  x = 7 , y = 4

  The point is on the line so the length is 0.

d) refer advanced part Problem 2.
function k = num_samples(n, m, p)

if m == n

    k = 2 ;

else

    k = ceil( log(1-p) / ( log(n+m) + log(n-m) -  2 *  log(n) ) ) ;

end
e) 

function pts_cor = verify(p1, p2, pts, eps)

l = gen_line(p1,p2) ;

pts_cor = [] ;

[no_pts dummy] = size(pts) ;

for i = 1:no_pts

    if line_dist(l,pts(i, :)) < eps

        pts_cor = [pts_cor ; pts(i, :)] ;

    end

end
f)
function pts = test(n)

pts = [n 2] ;

for i = 1 : 8 

    pts(i, 1) = round(rand * 50 ) ;     pts(i, 2) = round(25 + randn) ;

end

for i = 9 : n + 8

    pts(i, 1) = round(rand * 50 ) ;     pts(i, 2) = round(rand * 50 );

end
g)

function [L, pts, c] = ransac1(n)

pts = test(n) ;

k = num_samples(n + 8, 8, 0.95) ;

sel = 0 ;  c = 0 ;

selected = [] ;

while (sel < k) 

    t1 = ceil( rand * (n+8) ) ;     t2 = ceil( rand * (n+8) ) ;

    if t1 > t2  % swap
        t1 = t1 + t2 ;         t2 = t1 - t2 ;         t1 = t1 - t2 ;

    end

    if t1 ~= t2 && any(ismember(selected, [t1 t2], 'rows')) == false

        sel = sel + 1 ;         selected = [selected;  t1 t2 ] ;

    end

end

vote = zeros(1,k) ;

for i = 1 : k

     pts_cor = verify ( pts(selected(i, 1), :) , pts(selected(i,2), :),  pts, 2 ) ;

     [vote(i) dummy]= size(pts_cor) ;

end

[max_val , max_loc] = max(vote) 

selected(max_loc, :)

pts(selected(max_loc, 1), :)

pts(selected(max_loc, 2), :)

L = gen_line(pts(selected(max_loc, 1), :), pts(selected(max_loc, 2), :)) ;

pts_cor = verify ( pts(selected(max_loc, 1), :), pts(selected(max_loc, 2), :),  pts, 2 ) ;

for i = 1 : k

    if selected(i,1) < 9 && selected(i,2) < 9 

       c = c + 1 ;

   end

end

plot(pts(1:8, 1), pts(1:8, 2), 'r.') ; hold on ;

plot(pts(9:n+8, 1), pts(9:n+8, 2), 'k+') ; hold on ;

plot(pts_cor(:, 1), pts_cor(:, 2), 'bs') ; hold on ;

x = [0 : 0.1 : 50] ;

y = (-x * L(1) - L(3)) / L(2) ;

plot(x,y, 'c.') ; hold off ;

pts = pts_cor ;
2. EM
a)

p1(80) = 0.01,      p1(90) = 0.0097,  p1(100) = 0.0088,  p1(110) = 0.0075

p2(80) = 0.0013,  p2(90) = 0.0022,  p2(100) = 0.0032,  p2(110) = 0.0046

w1(x) = p1(x) / ( p1(x) + p2(x)) ,   w2(x) = 1 - w1(x) 

w1(80) = 0.8808,  w1(90) = 0.8176,  w1(100) = 0.7311,  w1(110) = 06225

w2(80) = 0.1192,  w2(90) = 0.1824,  w2(100) = 0.2689,  w2(110) = 0.3775

b)


w1mean = (dot product of weights and it corresponding mean value) / sum(weights)



= 92.7778

 
Likewise, 


w2mean = 117.6860

c)
new sigma = 16.3594

3.

a) origin (0,0)

 r = 0 for all θ
b) r = 4(cos θ + sin θ)
c) r = 6cos θ + 7 sin θ
The figure is
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So your result should look like the graph above except negative r values.

Advanced assignment

1. 

a) Fitting a line to data
function [a, b, c] = fit_lines( x, y, w )

[mx, nx] = size(x); [my, ny] = size(y);

wx = w.*x; wy = w.*y;

t1 = sum(wx.*x)/nx  - ((sum(wx)/nx).^ 2) / (sum(w)/nx);

t2 = sum(wx.*y)/nx  - (sum(wx)/nx) * (sum(wy)/nx) / (sum(w)/nx);

t3 = t2;

t4 = sum(wy.*y)/nx  - ((sum(wy)/nx).^ 2) / (sum(w)/nx) ;

M = [t1, t2;t3, t4];

% find eigenvalue lamda and eigenvector x

[V, D] = eig(M);

% select eig vactor

  a = V(1,1);

  b = V(2,1); % tangent : ax + by + c

  c = -1 * (a * sum(wx) + b * sum(wy))/sum(w); 

  d1 = sum((w.*(a.*x + b.*y + c)).^2);

  a = V(1,2);

  b = V(2,2); % tangent : ax + by + c

  c = -1 * (a * sum(wx) + b * sum(wy))/sum(w); 

  d2 = sum((w.*(a.*x + b.*y + c)).^2);  

  if ( d2 >= d1 ),

    a = V(1,1);

    b = V(2,1); % tangent : ax + by + c

    c = -1 * (a * sum(wx) + b * sum(wy))/sum(w); 

  end

 b) Estimating the parameters of lines using EM

function o = line_em(sigma, simple);

% Sigma is the amount of noise to use.

% simple = 1 means least squares, = 0 means total least squares.

theta1 = 2*pi*rand;

theta2 = 2*pi*rand;

a1 = cos(theta1);

b1 = sin(theta1);

a2 = cos(theta2);

b2 = sin(theta2);

% Initialize the lines so that their orienation is drawn from a uniform

% distribution.

c1 = 4*rand - .5;

c2 = 4*rand - .5;

% This initialization is more ad-hoc.  Ideally, it should be based more on

% the data.

x=0:0.05:1; y=(abs(x-0.5) < 0.25).*(x+1)+(abs(x-0.5) >=0.25).*(-x);

pts = [x;y]+ sigma*randn(2,length(x));

% It is interesting to flip the x and y coordinates of the test set, as in

% the commented out line above.  With that data, least squares and total

% least squares work very differently.

% Initialization 

sigma1_cur = .3;

% Initialization of sigma

sigma2_cur = sigma1_cur;

for i = 1:11

    % Just do 11 iterations.  I changed this as I debugged.

    % Expectation step

    dists1 = a1*pts(1,:) + b1*pts(2,:) - c1;

    dists2 = a2*pts(1,:) + b2*pts(2,:) - c2;

    prob1 = exp(- (dists1.^2 / sigma1_cur^2));

    prob2 = exp(- (dists2.^2 / sigma2_cur^2));

    if any(prob1==0 & prob2==0)

        keyboard

    end

    weights1 = prob1./(prob1+prob2);

    weights2 = prob2./(prob1+prob2);

   if mod(i,1) == 0

    plot_line_em(pts, weights1, a1, b1, c1, a2, b2, c2);

%        'last iteration'

% This just visualizes the results.  I changed 0 to other numbers to look

% at either every iteration, every other iteration, etc....

    end

    % Maximization step

    if simple

        [a1,b1,c1] = simple_weighted_line_fit(pts, weights1);

        [a2,b2,c2] = simple_weighted_line_fit(pts, weights2);

    else       

        [a1,b1,c1] = weighted_line_fit(pts, weights1);

        [a2,b2,c2] = weighted_line_fit(pts, weights2);

    end

    % I implemented least squares, and total least squares to compare.

    dists1 = a1*pts(1,:) + b1*pts(2,:) - c1;

    dists2 = a2*pts(1,:) + b2*pts(2,:) - c2;

    % You must recompute the distances before computing sigma.

     sigma1_cur = max(eps, sqrt( (sum((dists1.^2).*weights1) ...

         + sum((dists2.^2).*weights2)) / length(pts)));

     sigma2_cur = sigma1_cur;

end

o = 1;

function [a, b, c] = simple_weighted_line_fit(pts,weights)

% This does least squares, not total least squares.

xx = sum((pts(1,:).^2).*weights);

x = sum(pts(1,:).*weights);

w = sum(weights);

xy = sum( (pts(1,:).*pts(2,:)).*weights);

yy = sum((pts(2,:).^2).*weights);

y = sum(pts(2,:).*weights);

R = [xx, x; x, w]\[xy;y];

norm = sqrt(1+R(1)^2);

a = -R(1)/norm;

b = 1/norm;

c = R(2)/norm;

2. Ransac

a) Note that the noise itself is 2-dimensional Gaussian function though, the line equation we are considering is ‘y= 25’ – only the vertical perturbation matters.  Therefore we can degenerate the error dimension to 1 (around y = 25 axis) and the probability that a point lies within 2 from L equals trivially the summation of sigma function from -2σ to 2σ (=0.9544). 

The expected number of point lies within x of L can be computed as follow:

2 * (P(0) *  (k-2) + P(dy) * (k-2) + P(2dy) * (k-2) + …… + P(n * dy) * (k-2))

where P(x) = the probability that the size of the noise is x, n *  dy = 2 and  dy → 0.

Finally,  

2 * (P(0) *  (k-2) + P(dy) * (k-2) + P(2dy) * (k-2) + …… + P(n * dy) * (k-2))  

= (the summation of sigma function from -2σ to 2σ) * (k-2)

= 0.9544 * (k-2)

b) Since we assumed uniform distribution, the probability that a point lies within 2 from V equals trivially the ratio of the rectangular area defined by the lines x = 23 and x = 27(wrt the 25 * 25 square). So the probability is (4 * 50) / (50 * 50) = 0.08.

The actual distribution on the number of points(x) -out of n points-that will lie within 2 of V is binomial distribution such as: 

P(n,x) = nCx (0.08)x (0.92)(n-x)        

If the noise is independent to each other and the n is quite large then it is well known that the probability above can be approximated to Gaussian distribution N((, σ) where ( = n * p and σ2 = n * p * (1-p)


P(n,x) ≈ N(n*0.08, sqrt(n * 0.0736))

c) From a) and b), the probability of the expected number of incorrect noise points lie within 2 of V is greater than that of correct points within L is


0.9544 * (k-2)  + 2 <  (# of pts within 2 of V) = x


sum-of-gaussian(x, ∞) where mean = 0.08n ,  σ = 0.0736n


= sum-of-normal-gaussian( ((0.9544 k + 0.1) – 0.08n) / sqrt(0.074n), ∞ ) 


Note that we ignore the set of intersection points between 2 of L and 2 of V by the definition of the problem. If we have to consider this intersection points, it gets much harder. 

d) 

Let’s assume that the incorrect lines are all vertical/horizontal. 

(i)

The number of random pair of points we have to sample to ensure at least 95 % probability that one pair comes from the line L is

- The total number of the point we have is n + k 

- The probability we choose a pair that comes from the line is 


kC2 /n+kC2 = p ( or (k/(n+k))2 –sampling with replacement)

- The probability we fail to choose a pair that comes from the line is (1 – p)

- The probability we choose at least a pair that comes from the line when we randomly choose m pairs from the points we have is 1 – (1-p)m  

- So it is pretty simple to calculate m using different p

m > log(0.05) / log(1-p) where p = kC2 /n+kC2


Therefore on the fixed value k (=10) and n = 10, 30, 50, the number of random pairs to sample is 11, 51, 117 (or 11, 41, 107) respectively.

(ii)


The expected number of points matched to L


The points from k : 2 + ( 0.9544 * 8) = 9.6 points


(The points from n : n= 10, 10 * 0.08 = 0.8 points

  
 

         n= 30, 30 * 0.08 = 2.4 points

  
 

         n= 50, 50 * 0.08 = 4 points     are ignored)

(iii)


Using the result of c), Lets define

Ppn = The probability that “the expected number of incorrect noise points lie within 2 

          of V is greater than that of correct points within L” given k points from L and

         n points of noise.

      = sum-of-normal-gaussian( ((0.9544 k + 0.1) – 0.08n) / sqrt(0.074n), ∞ )


m = The number of pairs of the points that we have to choose/sample to include 

       at least one pair of points from L.(with 95% prob.) at i).

    = log(0.05) / log(1-p) where p = kC2 /n+kC2

Pc = The probability that we choose a pair of points that lie on L.


     =  kC2 /n+kC2 


Pc(i,m) = The probability that we choose i pairs of points that lie on L out of 

m sampled pairs. = mCi Pci (1 - Pc) m-i 


Suppose we have sampled m-pairs of points from n+k points in the image. Then the probability that one of the incorrect lines will match more points than correct line would be


1 – (prob. of finding the correct line)

Then the probability of finding the correct line is

- When we have i pairs (out of m-pairs of points in the sample) of points that lie on L, the probability of finding correct line is


(1- Ppn)m-i 

- So the probability of finding the correct line is


Pcorrect = ∑i=0..m  (1- Ppn)m-i Pc(i,m)

Finally we can get  
Pincorrect = 1 - Pcorrect
