1. Ransac
a)

function line = gen_line(pt1, pt2)

if sum(pt1 == pt2) == 2

 return ;

end

A = [pt1 ; pt2] ;

if det(A) ~= 0

 sol = A \ [-1 ; -1] ; % Solution of ax + by +1 = 0

 sol = [sol' 1] ;

else

 if sum(pt1 == [0 0]) == 2 || sum(pt2 == [0 0]) == 2

 sol = [pt1(2) + pt2(2) , -pt1(1)-pt2(1), 0] ;

 else

 sol = [pt2(2) - pt1(2) , pt1(1) - pt2(1), (pt2(1) - pt1(1)) * (pt1(2)-pt1(1))] ;

 end

end

r = sqrt(sol(1)^2 + sol(2)^2) ;

line = [] ; line = [line, sol(1) / r] ; line = [line, sol(2) / r] ; line = [line, sol(3) / r] ;
b)

function dist = line_dist(L, pt)

 dist = abs(L * [pt 1]') % I assumed the line data is coming from a)
c)

 i)

 The line equation that formed by (0,1) and (2,1) is y = 1 so the length should be 1

 ii)

 The line equation that formed by (1,1) and (3,2) is

 y -1 = ½ (x-1)

 the line that passes (7,4) and is perpendicular to the line above,

 y – 4 = -2(x-7)

 The intersection point of these two lines is

 ½ (x+1) = -2(x-9)
 x = 7 , y = 4

 The point is on the line so the length is 0.

d) refer advanced part Problem 2.
function k = num_samples(n, m, p)

if m == n

 k = 2 ;

else

 k = ceil(log(1-p) / (log(n+m) + log(n-m) - 2 * log(n))) ;

end
e)

function pts_cor = verify(p1, p2, pts, eps)

l = gen_line(p1,p2) ;

pts_cor = [] ;

[no_pts dummy] = size(pts) ;

for i = 1:no_pts

 if line_dist(l,pts(i, :)) < eps

 pts_cor = [pts_cor ; pts(i, :)] ;

 end

end
f)
function pts = test(n)

pts = [n 2] ;

for i = 1 : 8

 pts(i, 1) = round(rand * 50) ; pts(i, 2) = round(25 + randn) ;

end

for i = 9 : n + 8

 pts(i, 1) = round(rand * 50) ; pts(i, 2) = round(rand * 50);

end
g)

function [L, pts, c] = ransac1(n)

pts = test(n) ;

k = num_samples(n + 8, 8, 0.95) ;

sel = 0 ; c = 0 ;

selected = [] ;

while (sel < k)

 t1 = ceil(rand * (n+8)) ; t2 = ceil(rand * (n+8)) ;

 if t1 > t2 % swap
 t1 = t1 + t2 ; t2 = t1 - t2 ; t1 = t1 - t2 ;

 end

 if t1 ~= t2 && any(ismember(selected, [t1 t2], 'rows')) == false

 sel = sel + 1 ; selected = [selected; t1 t2] ;

 end

end

vote = zeros(1,k) ;

for i = 1 : k

 pts_cor = verify (pts(selected(i, 1), :) , pts(selected(i,2), :), pts, 2) ;

 [vote(i) dummy]= size(pts_cor) ;

end

[max_val , max_loc] = max(vote)

selected(max_loc, :)

pts(selected(max_loc, 1), :)

pts(selected(max_loc, 2), :)

L = gen_line(pts(selected(max_loc, 1), :), pts(selected(max_loc, 2), :)) ;

pts_cor = verify (pts(selected(max_loc, 1), :), pts(selected(max_loc, 2), :), pts, 2) ;

for i = 1 : k

 if selected(i,1) < 9 && selected(i,2) < 9

 c = c + 1 ;

 end

end

plot(pts(1:8, 1), pts(1:8, 2), 'r.') ; hold on ;

plot(pts(9:n+8, 1), pts(9:n+8, 2), 'k+') ; hold on ;

plot(pts_cor(:, 1), pts_cor(:, 2), 'bs') ; hold on ;

x = [0 : 0.1 : 50] ;

y = (-x * L(1) - L(3)) / L(2) ;

plot(x,y, 'c.') ; hold off ;

pts = pts_cor ;
2. EM
a)

p1(80) = 0.01, p1(90) = 0.0097, p1(100) = 0.0088, p1(110) = 0.0075

p2(80) = 0.0013, p2(90) = 0.0022, p2(100) = 0.0032, p2(110) = 0.0046

w1(x) = p1(x) / (p1(x) + p2(x)) , w2(x) = 1 - w1(x)

w1(80) = 0.8808, w1(90) = 0.8176, w1(100) = 0.7311, w1(110) = 06225

w2(80) = 0.1192, w2(90) = 0.1824, w2(100) = 0.2689, w2(110) = 0.3775

b)

w1mean = (dot product of weights and it corresponding mean value) / sum(weights)

= 92.7778

Likewise,

w2mean = 117.6860

c)
new sigma = 16.3594

3.

a) origin (0,0)

 r = 0 for all θ
b) r = 4(cos θ + sin θ)
c) r = 6cos θ + 7 sin θ
The figure is
[image: image1.jpg]10

-2

-4

-8

-10
0

So your result should look like the graph above except negative r values.

Advanced assignment

1.

a) Fitting a line to data
function [a, b, c] = fit_lines(x, y, w)

[mx, nx] = size(x); [my, ny] = size(y);

wx = w.*x; wy = w.*y;

t1 = sum(wx.*x)/nx - ((sum(wx)/nx).^ 2) / (sum(w)/nx);

t2 = sum(wx.*y)/nx - (sum(wx)/nx) * (sum(wy)/nx) / (sum(w)/nx);

t3 = t2;

t4 = sum(wy.*y)/nx - ((sum(wy)/nx).^ 2) / (sum(w)/nx) ;

M = [t1, t2;t3, t4];

% find eigenvalue lamda and eigenvector x

[V, D] = eig(M);

% select eig vactor

 a = V(1,1);

 b = V(2,1); % tangent : ax + by + c

 c = -1 * (a * sum(wx) + b * sum(wy))/sum(w);

 d1 = sum((w.*(a.*x + b.*y + c)).^2);

 a = V(1,2);

 b = V(2,2); % tangent : ax + by + c

 c = -1 * (a * sum(wx) + b * sum(wy))/sum(w);

 d2 = sum((w.*(a.*x + b.*y + c)).^2);

 if (d2 >= d1),

 a = V(1,1);

 b = V(2,1); % tangent : ax + by + c

 c = -1 * (a * sum(wx) + b * sum(wy))/sum(w);

 end

 b) Estimating the parameters of lines using EM

function o = line_em(sigma, simple);

% Sigma is the amount of noise to use.

% simple = 1 means least squares, = 0 means total least squares.

theta1 = 2*pi*rand;

theta2 = 2*pi*rand;

a1 = cos(theta1);

b1 = sin(theta1);

a2 = cos(theta2);

b2 = sin(theta2);

% Initialize the lines so that their orienation is drawn from a uniform

% distribution.

c1 = 4*rand - .5;

c2 = 4*rand - .5;

% This initialization is more ad-hoc. Ideally, it should be based more on

% the data.

x=0:0.05:1; y=(abs(x-0.5) < 0.25).*(x+1)+(abs(x-0.5) >=0.25).*(-x);

pts = [x;y]+ sigma*randn(2,length(x));

% It is interesting to flip the x and y coordinates of the test set, as in

% the commented out line above. With that data, least squares and total

% least squares work very differently.

% Initialization

sigma1_cur = .3;

% Initialization of sigma

sigma2_cur = sigma1_cur;

for i = 1:11

 % Just do 11 iterations. I changed this as I debugged.

 % Expectation step

 dists1 = a1*pts(1,:) + b1*pts(2,:) - c1;

 dists2 = a2*pts(1,:) + b2*pts(2,:) - c2;

 prob1 = exp(- (dists1.^2 / sigma1_cur^2));

 prob2 = exp(- (dists2.^2 / sigma2_cur^2));

 if any(prob1==0 & prob2==0)

 keyboard

 end

 weights1 = prob1./(prob1+prob2);

 weights2 = prob2./(prob1+prob2);

 if mod(i,1) == 0

 plot_line_em(pts, weights1, a1, b1, c1, a2, b2, c2);

% 'last iteration'

% This just visualizes the results. I changed 0 to other numbers to look

% at either every iteration, every other iteration, etc....

 end

 % Maximization step

 if simple

 [a1,b1,c1] = simple_weighted_line_fit(pts, weights1);

 [a2,b2,c2] = simple_weighted_line_fit(pts, weights2);

 else

 [a1,b1,c1] = weighted_line_fit(pts, weights1);

 [a2,b2,c2] = weighted_line_fit(pts, weights2);

 end

 % I implemented least squares, and total least squares to compare.

 dists1 = a1*pts(1,:) + b1*pts(2,:) - c1;

 dists2 = a2*pts(1,:) + b2*pts(2,:) - c2;

 % You must recompute the distances before computing sigma.

 sigma1_cur = max(eps, sqrt((sum((dists1.^2).*weights1) ...

 + sum((dists2.^2).*weights2)) / length(pts)));

 sigma2_cur = sigma1_cur;

end

o = 1;

function [a, b, c] = simple_weighted_line_fit(pts,weights)

% This does least squares, not total least squares.

xx = sum((pts(1,:).^2).*weights);

x = sum(pts(1,:).*weights);

w = sum(weights);

xy = sum((pts(1,:).*pts(2,:)).*weights);

yy = sum((pts(2,:).^2).*weights);

y = sum(pts(2,:).*weights);

R = [xx, x; x, w]\[xy;y];

norm = sqrt(1+R(1)^2);

a = -R(1)/norm;

b = 1/norm;

c = R(2)/norm;

2. Ransac

a) Note that the noise itself is 2-dimensional Gaussian function though, the line equation we are considering is ‘y= 25’ – only the vertical perturbation matters. Therefore we can degenerate the error dimension to 1 (around y = 25 axis) and the probability that a point lies within 2 from L equals trivially the summation of sigma function from -2σ to 2σ (=0.9544).

The expected number of point lies within x of L can be computed as follow:

2 * (P(0) * (k-2) + P(dy) * (k-2) + P(2dy) * (k-2) + …… + P(n * dy) * (k-2))

where P(x) = the probability that the size of the noise is x, n * dy = 2 and dy → 0.

Finally,

2 * (P(0) * (k-2) + P(dy) * (k-2) + P(2dy) * (k-2) + …… + P(n * dy) * (k-2))

= (the summation of sigma function from -2σ to 2σ) * (k-2)

= 0.9544 * (k-2)

b) Since we assumed uniform distribution, the probability that a point lies within 2 from V equals trivially the ratio of the rectangular area defined by the lines x = 23 and x = 27(wrt the 25 * 25 square). So the probability is (4 * 50) / (50 * 50) = 0.08.

The actual distribution on the number of points(x) -out of n points-that will lie within 2 of V is binomial distribution such as:

P(n,x) = nCx (0.08)x (0.92)(n-x)

If the noise is independent to each other and the n is quite large then it is well known that the probability above can be approximated to Gaussian distribution N((, σ) where (= n * p and σ2 = n * p * (1-p)

P(n,x) ≈ N(n*0.08, sqrt(n * 0.0736))

c) From a) and b), the probability of the expected number of incorrect noise points lie within 2 of V is greater than that of correct points within L is

0.9544 * (k-2) + 2 < (# of pts within 2 of V) = x

sum-of-gaussian(x, ∞) where mean = 0.08n , σ = 0.0736n

= sum-of-normal-gaussian(((0.9544 k + 0.1) – 0.08n) / sqrt(0.074n), ∞)

Note that we ignore the set of intersection points between 2 of L and 2 of V by the definition of the problem. If we have to consider this intersection points, it gets much harder.

d)

Let’s assume that the incorrect lines are all vertical/horizontal.

(i)

The number of random pair of points we have to sample to ensure at least 95 % probability that one pair comes from the line L is

- The total number of the point we have is n + k

- The probability we choose a pair that comes from the line is

kC2 /n+kC2 = p (or (k/(n+k))2 –sampling with replacement)

- The probability we fail to choose a pair that comes from the line is (1 – p)

- The probability we choose at least a pair that comes from the line when we randomly choose m pairs from the points we have is 1 – (1-p)m

- So it is pretty simple to calculate m using different p

m > log(0.05) / log(1-p) where p = kC2 /n+kC2

Therefore on the fixed value k (=10) and n = 10, 30, 50, the number of random pairs to sample is 11, 51, 117 (or 11, 41, 107) respectively.

(ii)

The expected number of points matched to L

The points from k : 2 + (0.9544 * 8) = 9.6 points

(The points from n : n= 10, 10 * 0.08 = 0.8 points

 n= 30, 30 * 0.08 = 2.4 points

 n= 50, 50 * 0.08 = 4 points are ignored)

(iii)

Using the result of c), Lets define

Ppn = The probability that “the expected number of incorrect noise points lie within 2

 of V is greater than that of correct points within L” given k points from L and

 n points of noise.

 = sum-of-normal-gaussian(((0.9544 k + 0.1) – 0.08n) / sqrt(0.074n), ∞)

m = The number of pairs of the points that we have to choose/sample to include

 at least one pair of points from L.(with 95% prob.) at i).

 = log(0.05) / log(1-p) where p = kC2 /n+kC2

Pc = The probability that we choose a pair of points that lie on L.

 = kC2 /n+kC2

Pc(i,m) = The probability that we choose i pairs of points that lie on L out of

m sampled pairs. = mCi Pci (1 - Pc) m-i

Suppose we have sampled m-pairs of points from n+k points in the image. Then the probability that one of the incorrect lines will match more points than correct line would be

1 – (prob. of finding the correct line)

Then the probability of finding the correct line is

- When we have i pairs (out of m-pairs of points in the sample) of points that lie on L, the probability of finding correct line is

(1- Ppn)m-i

- So the probability of finding the correct line is

Pcorrect = ∑i=0..m (1- Ppn)m-i Pc(i,m)

Finally we can get
Pincorrect = 1 - Pcorrect
