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Image-based Rendering and 

Interpolation

New Images From Old

• Transfer Rays of Light from One Image 

to Another

– Rectification and mosaicing

– Light Fields

• Interpolate missing pixels

– Interpolate in the image

– Interpolate light rays
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Light-Field Rendering

• Sample the set of light rays in the world.

• Then generate an image by selecting 

the right rays.

• Mosaicing: simpler, just sample rays 

through one focal point.

• If one has all rays then camera can also 

move.

Mosaics

• Take multiple images and construct one 

big image.

– Represented as image, cylinder or sphere.

• Allows panning and zooming.

– Simplest kind of motion.
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•Fixed focal point.

Correspondence needed to align images.

•Image rectification
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Cameras with different focal 

points

• Stereo Transfer

If using stereo we 

can determine depth, 

we can transfer 

(project) point to new 

cameras.
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Stereo Transfer

• Note that we can just interpolate 

disparity to determine where a point will 

appear in a new image, providing focal 

points are all collinear.

– Given Z and f, d and T are linearly related.

Linear Interpolation

• Given a function defined at two points, 

f(0), f(1), we want to find values for 

intermediate points, eg., f(x), 0 < x < 1.

• Can take weighted average:

f(x) = (1-x)*f(0) + x*f(1) = f(0) + x(f(1)-f(0))

• This is equation for line with slope f(1)-

f(0).
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Bilinear Interpolation – 4 points

• Given values at (0,0), (1,0), (0,1), (1,1) 

find value at (x,y).  

• Linearly interpolate (x,0), (x,1), then 

interpolate (x,y).

• Or, find (0,y) and (1,y) and interpolate.

• These produce same results.

If we interpolate to get f(x,0) = (1-x)f(0,0)+xf(1,0), f(x,1) = (1-x)f(0,1) + xf(1,1).  Then 

f(x,y) = ((1-x)f(0,0)+xf(1,0))(1-y) + (f(x,1) = (1-x)f(0,1) + xf(1,1))y.  

If we interpolate to get f(0,y) = (1-y)f(0,0) + yf(0,1), f(1,y) = (1-y)f(1,0) + y(f(1,1).  

Then 

f(x,y) = ((1-y)f(0,0) + yf(0,1))(1-x) + ((1-y)f(1,0)+y(f(1,1)))x

These are the same.
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Cubic Interpolation

Instead of weighting by distance, d, weight by:

1 – 3d2 + 2|d|3

•Smooth

•Symmetric

Suppose 0<= x <= 1, and a function f is defined on f(0), f(1).  We want to 

define it for f(x) so that f(x) is smooth.  

If we do this by averaging neighbors, we have:

f(x) = g(x)*f(0) + g(1-x)f(1).  Then we want a function g that is smooth, and 

in which g(0) = 1 and g(1) = 0, and in which g is symmetric so that g(x) + 

g(1-x) = 1.

With linear interpolation g(x) = 1-x.  This fits the second two criteria, but 

this g is not smooth.  There is a discontinuity at f(0), since we suddenly 

switch between averaging f(0) and f(1) and averaging f(0) and f(-1)

So instead, we want f(x) near f(0) to be based mostly on the value of f(0), 

and only to gradually average in f(1) as we get closer to it. 

A nice function that does this is 1 – 3*d*d +2*|d*d*d|

Note that g(1-x) = 1 – 3*(1-x)(1-x) +2(1-x)(1-x)(1-x)

= 1 – 3 + 6x –3x*x + 2 – 6x + 6x*x – 2x*x*x = 3x*x – 2*x*x*x 

= 1 – (1 – 3x*x + 2x*x*x)

Also, we can see that when x -> 0, g(x) -> 1 – 3x*x + 2*x*x*x -> 1, and that 

g(1-x) similarly goes to 0.  This means that (g(x)f(0) + g(1-x)f(1))-f(0) / x -> 

0, which shows that the tangent at f(0) on the right side of the curve is 0.  

Similarly, the tangent on the other side is also zero, so two interpolating 

curves meet at x=0 with the same tangent, ie., smoothly.
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Application: Image Resizing

• When we enlarge an image, we need 

values for the new pixels.

• Common methods:

– Nearest neighbor

– Bilinear interpolation

– Bicubic interpolation

Nearest 

~.007 secs
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Bilinear 

~.43 secs

Bicubic

~ .75 secs


