K-Means

We’ll consider a model problem. We have a bunch of points in the plane. We want to
group these into clusters of nearby points. Let’s define the following problem. We have
K clusters. Each cluster has a center, c;. Every point is assigned to one cluster. We want
to minimize the sum of squares difference between each point and its cluster center.

To be more precise, we have clusters A, ... Ax. We want to minimize:
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To solve this we 1) guess centers; 2) assign each point to the nearest center; 3) then
recompute each center as the average of the points assigned to it, returning to step 2.

We can see that this iteration always reduces the error measure. This is because
reassigning a point to the nearest center reduces error (step 2). And the center that
minimizes sum of squared error is the average (step 3).

(To prove this for step 3, suppose we have points X; ... X,, and we want to pick m to
minimize
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If we take the derivative and set it to zero we have:
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We can also see that this must converge in a finite number of steps, because there are
only a finite number of possible assignments.

Finally, we can see that this produces local minima that need not be global minima. For
example, suppose we want to cluster 2, 6, 12 into two clusters. The global optima has
centers at 4 and 12. But if we start at 0 and 6, say, we converge to 2 and 9, which is a
local minima.



The key problems with this are: how do we initialize, and how many clusters do we look
for? The first problem can be solved heuristically. Pick random points near the points.
A good heuristic is to try many initializations and pick the one that leads to the best
answer. Determining the number of clusters is always a problem, however this is work
on this. Note that this is similar to the standard problem in learning of choosing the right
number of parameters so you do not overfit your data.



