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Linear Models in Motion and
Lighting

Linear Models

 Structure-from-motion with affine
projection
— Scaled orthographic projection, ignoring
some non-linear constraints (we can add
those later if we want).

— Simple, linear solution.

» Photometric Stereo
— Lambertian reflectance, no shadows
— Everything is linear
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The Equation of Weak
Perspective (scaled
orthographic projection)

(x,y,z) > s(x, )

* Approximate by assuming depth constant.
*So s is constant for all points.

+ Parallel lines no longer converge, they remain
parallel.

First: Represent motion

« We’ litalk about a fixed camera, and moving object.

» Key point: Some matrix
Points

The image
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Remember what this means.

» We are representing moving a set of points,
projecting them into the image, and scaling them.

* Matrix multiplication: take inner product between
each row of S and each point. Firstrow of S
produces X coordinates, while second row produces
Y.

* Projection occurs because S has no third row.

* Translation occurs with tx and ty.
* Scaling can be encoded with a scale factor in S.

* The rest of S must be allowing the object to rotate.

Examples:

*S=[s00,0;0,s,0, 0]; This is just
projection, with scaling by s.

*S=Js, 0,0, s*tx; 0,s, 0, s*ty]; This is
translation by (tx,ty,something), projection,
and scaling.
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Structure-from-Motion

» S encodes:
— Projection: only two lines
— Scaling, since S can have a scale factor.
— Translation, by tx/s and ty/s.
— Rotation:

Rotation

Represents a
3D rotation of
the points in P.
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First, recall 2D rotation
(easier)

Matrix. R acts cosd sind
on points by R=

rotating them.

cosd smb\x x
—sin@ cos@\y, ¥,

—sin@ cosd

« Also, RR"=Identity. RT is also a rotation
matrix, in the opposite direction to R.

Why does multiplying points by R rotate them?

* Think of the rows of R as a new coordinate system.
Taking inner products of each points with these expresses
that point in that coordinate system.

» This means rows of R must be orthonormal vectors
(orthogonal unit vectors).

* Think of what happens to the points (1,0) and (0,1). They
go to (cos theta, -sin theta), and (sin theta, cos theta). They
remain orthonormal, and rotate clockwise by theta.

* Any other point, (a,b) can be thought of as a(1,0) +
b(0,1). R(a(1,0)+b(0,1) =Ra(1,0) + Ra(0,1) = aR(1,0) +
bR(0,1). So it’ s in the same position relative to the
rotated coordinates that it was in before rotation relative
to the x, y coordinates. That is, it” s rotated.




Simple 3D Rotation

cosd smé O
—sné@ cosf O
0 0 1

Rotation about z axis.

Rotates x,y coordinates. Leaves z coordinates fixed.

Full 3D Rotation

cosd sin@ 0) cosf 0 sinpf1 0 0
R=|—-sin@ cos@ O 0 1 0 0 cosa sina

0 0 IA-smnf 0 cosfp)\O —sina cosa

» Any rotation can be expressed as combination of three
rotations about three axes.

1 0 0 * Rows (and columns) of R are
0 orthonormal vectors.

* R has determinant 1 (not -1).

0 0 1
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* Intuitively, it makes sense that 3D rotations can be
expressed as 3 separate rotations about fixed axes.
Rotations have 3 degrees of freedom; two describe an
axis of rotation, and one the amount.

* Rotations preserve the length of a vector, and the angle
between two vectors. Therefore, (1,0,0), (0,1,0), (0,0,1)
must be orthonormal after rotation. After rotation, they
are the three columns of R. So these columns must be
orthonormal vectors for R to be a rotation. Similarly, if
they are orthonormal vectors (with determinant 1) R will
have the effect of rotating (1,0,0), (0,1,0), (0,0,1). Same
reasoning as 2D tells us all other points rotate too.

* Note if R has determinant -1, then R is a rotation
plus a reflection.

Putting it Together

3D Translation

0 0 ¢

1 x
jo 1 0 ¢
0

01 ¢

Projection

where We can just write st, as

t,and st as t,.
(S|,1 > SI,Z ’Sl,s) i (Sz,l ’Sz‘z > SZJ) = O

H(Sl.l 2 Sl,z 2 Sl.z) = H(S21 ’ Sz.z ’ SzAz)
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Affine Structure from Motion

Affine Structure-from-Motion:
Two Frames (1)
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Affine Structure-from-Motion:
Two Frames (2)

To make things
easy, suppose:

Affine Structure-from-Motion:
Two Frames (3)
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Affine Structure-from-Motion:
Two Frames (4)

We can solve for motion by inverting matrix of points.

Or, explicitly, we see that first column on left (images of first
point) give the translations. After solving for these, we can
solve for the each column of the s components of the
motion using the images of each point, in turn.

Affine Structure-from-Motion:
Two Frames (5)

Once we know the motion, we can use the images of
another point to solve for the structure. We have four
linear equations, with three unknowns.
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Affine Structure-from-Motion:
Two Frames (6)

Suppose we just know where the k’ th point is in image 1.

Then, we can use the first two equations to write ayand by as linear
in cx. The final two equations lead to two linear equations in the
missing values and ck. If we eliminate c, we get one linear equation
in the missing values. This means the unknown point lies on a
known line. That is, we recover the epipolar constraint.
Furthermore, these lines are all parallel.

Affine Structure-from-Motion:
Two Frames (7)

But, what if the first four points aren’t so simple?

Then we define A so that:

This is always possible as long as the points
aren’ t coplanar.
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We have:

Affine Structure-from-Motion:

)

(9

Two Frames

Then we just pretend that:

iS our motion,
and solve as

12



4/30/2014

Affine Structure-from-Motion:
Two Frames (10)

This means that we can never determine the exact 3D
structure of the scene. We can only determine it up to
some transformation, A. Since if a structure and motion
explains the points:

So does
another of
the form:

Affine Structure-from-Motion:
Two Frames (11)

Note that A has
the form:

A corresponds to
translation of the
points, plus a
linear
transformation.
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Source emits photons nght And then some

reach the
eye/camera.

. Photons travel in a
* . -
+, straight line
*

When they hit an object they:
* bounce off in a new direction

» or are absorbed

[ is direction of light
[ is intensity of light
i = max(0,A(] e i)

i 1isradiance

A 1s albedo

A 1s surface normal
Surface

normal
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Lambertian Examples

Lambertian sphere as the light
moves.

(Steve Seitz)
Scene

(Oren and Nayar)

Lambertian, point sources, no
shadows. (Shashua, Moses)

Whiteboard

Solution linear

Linear ambiguity in recovering scaled
normals

Lighting not known.

Recognition by linear combinations.
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With no shadows, Lambertian reflectance

If we let n=lambda*\hat(n) (albedo times surface
normal) and / denote the lighting intensity times the
direction, i=<n,/>, the inner product between two 3D
vectors, one representing the normal scaled by albedo,
the other representing lighting direction scaled by
intensity. If we have an image with many pixels:

X1

(iy 0y i) = ly IZ)(yT

V4

Each row on the left is a different image, and each row on

the first matrix on the right is a different light, but these are
all images of the same scene. This equation looks exactly
like structure-from-motion, and can be solved in the same

way. With many pixels we can solve for the scaled surface
normals, up to a linear transformation.
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