Matching

 Compare region of image to region of image.
— We talked about this for stereo.

— Important for motion.
» Epipolar constraint unknown.
* But motion small.

— Recognition
* Find object in image.
* Recognize object.
 Today, simplest kind of matching. Intensities
similar.



Matching in Motion: optical
flow

H(z,y) I(x,y)

— Solve pixel correspondence problem

e given a pixel in H, look for nearby pixels of the same
colorin |

 How to estimate pixel motion from image H to
Image |?



Matching: Finding objects
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Matching: Identifying Objects




Matching: what to match

o Simplest: SSD with windows.
— We talked about this for stereo as well:

— Windows needed because pixels not
Informative enough. (More on this later).



Comparing Windows: b -
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Window size

o Effect of window
size

(Seitz)

W =20

Better results with adaptive window

T. Kanade and M. Okutomi, A Stereo Matching
Algorithm with an Adaptive Window: Theory and

Experiment,, Proc. International Conference on
Robotics and Automation, 1991.

D. Scharstein and R. Szeliski. Stereo matching with
nonlinear diffusion. International Journal of

Computer Vision, 28(2):155-174, July 1998



Subpixel SSD

 \When motion is a few pixels or less,
motion of an integer no. of pixels can be
iInsufficient.
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Bilinear Interpolation

To compare pixels that are not at integer grid points, we
resample the image.

Assume image Iis locally bilinear.

I(x,y) = ax + by + cxy + d = 0. Given the value of the
Image at four points: I(x,y), I(x+1,y), I(x,y+1), [(x+1,y+1)
we can solve for a,b,c,d linearly. Then, for any u
between x and x+1, for any v between y and y+1, we use
this equation to find I(u,v).



Matching: How to Match
Efficiently

e Baseline approach: try everything.
argminy_ (W(x, y) =1 (x+u,y+V))’
u,v

— Could range over whole image.
— Or only over a small displacement.



Matching: Multiscale

Fol .. search

(Weizmann Institute Vision Class)



The Gaussan Pyramid
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High resolution

(Weizmann Institute Vision Class)



When motion Is small: Optical Flow

H(x,vy) I(z,y)
« Small motion: (u and v are less than 1 pixel)
— Hxy) = I(x+u,y+v)
e Brute force not possible

e suppose we take the Taylor series expansion of I:

I(x+u,y+v) = I(x, y)—l—ﬂ ﬂ’U—I—higher order terms
~ I(z,y) + SLu+ 9L (Seitz)



Optical flow equation

e Combining these two equations R
0=1I(x+uy+v)— H(z,vy) shorthand: Iaz—%

~ I(z,y) + Lryu+ Iyv — H(z, y)
= (I(z,y) — H(z,y)) + Leu+ Iyv
~ It + Irxu + Iyv

~ I; +VI-[u v]

* In the limit as u and v go to zero, this
becomes exact

0=1+ VI [ %

(Seitz)



Optical flow equation

O=1I1++ VI [|u v]
 Q: how many unknowns and equations per
pixel?
* Intuitively, what does this constraint

mean?
— The component of the flow in the gradient
direction is determined

— The component of the flow parallel to an edge
IS unknown

This explains the Barber Pole illusion (Seitz)
http://www.sandlotscience.com/Ambiquous/barberpole.htm




Let’s look at an example of this. Suppose we have an image in which H(x,y) =y.
That is, the image will look like:

11111111111111
22222222222222
33333333333333
And suppose there is optical flow of (1,1). The new image will look like:
-1111111111111
2222222222222

1(3,3) = 2. H(3,3)=3. Sol,(3,3) =-1. GRAD I(3,3) = (0,1). So our constraint
equation will be: 0 = -1 + <(0,1), (u,v)>, whichis 1 =v. We recover the v
component of the optical flow, but not the u component. This is the aperture
problem.



First Order Approximation

ol . 0l
When we assume: | (X+U,y+V)=1(X,Y) +a—XU +—V

oy
We assume an image -
locally is:
“ (Seitz)




Aperture problem

(Seitz)



(Seitz)



Solving the aperture problem

 How to get more equations for a pixel?

— Basic idea: impose additional constraints

* most common is to assume that the flow field is smooth
locally

* one method: pretend the pixel's neighbors have the
same (u,v)
— If we use a 5x5 window, that gives us 25 equations per

PIXet o = 1,(py) 4+ VI(py) - [u v]

- I:(p1)  Iy(p1) | - Ii(p1) |
I:(p2)  Iy(p2) [ u ] — | Li(p2)
I Iw(I;25) Iy(I;25) ) i It(I;25) ]

A d b (Seitz)
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Lukas-Kanade flow

A d=05> —_— .
25x2 2x1 25x1 minimize HAd_bHQ

 We have more equations than unknowns: solve least
squares problem. This is given by:
2X2 2x1 2x1

(ATA) d= Alp

Sl SELI | [u] _ [ S
SLly SELI || o]~ | S

AT A AT

— Summations over all pixels in the KxK window
— Does A’ A look familiar? (Seitz)



Let’s look at an example of this. Suppose we have an image with a corner.
111112121222 e
1222222222 And this translates down and to the right: -1111111111
1233333333 -1222222222
1234444444 -1233333333

Let’s compute I, for the whole second image:

—————————— IX = -mmmmmemem Y = e
0-1-1-1-1-1 --00000 -
-1-1-1-1-1-1 --.50000 -0-.5-1-1-1-1-1-1
-1-1-1-1-1-1- --1.5000 -00-.5-1-1-1-1-1

Then the equations we get have the form:
(.5,-5)*u,v)=1, (1,0*u,v)=1, (0,-1)(u,v)=1.

Together, these lead to a solution thatu =1, v = -1.



Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation

Nl SELIy|[u]_ [ XL
SLly Sy, || v |~ | S

AT A Alp

When is This Solvable?

o ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
e ATA should be well-conditioned
— A,/ A, should not be too large (A, = larger eigenvalue) (Seitz)



Does this seem familiar?
Formula for Finding Corners

We look at matrix:

Gradient with respect to X,
Sum over a small region, times gradlent with respect to y

the hypothetlcajg‘ner
i 2
B 2
- I I —
/ WHY THIS?

Matrix is symmetric




First, consider case where:

c:_Z'XZ MNid,| [A4 0
DL, D200 L0 A

This means all gradients in neighborhood are:

(k,0) or (0,c) or (O,0) (oroff-diagonals cancel).
What is region like If:
1. A\1=07?
2. A\2=07?
3. A1=0 and A2=0?
4. AN1>0 and A2>07?



General Case:

From Singular Value Decomposition it follows
that since C Is symmetric:

C=R"

A 0

0 A,

where R Is a rotation matrix.

So every case is like one on last slide.

R



So, corners are the things we
can track

Corners are when A1, A2 are big; this Is
also when Lucas-Kanade works.

Corners are regions with two different
directions of gradient (at least).

Aperture problem disappears at
corners.

At corners, 18t order approximation fails.
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— large gradients, all the same

— large A, small A,

(Seitz)



Low texture region

— gradients have small magnitude
—small A, small A,



High textured region

— gradients are different, large magnitudes
— large A, large A,



Observation

 This Is a two image problem BUT

— Can measure sensitivity by just looking at one of
the images!

— This tells us which pixels are easy to track, which
are hard
» very useful later on when we do feature tracking...

(Seitz)



Errors In Lukas-Kanade

 What are the potential causes of errors in this
procedure?

— Suppose ATA is easily invertible
— Suppose there is not much noise in the image

 \When our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small

— A point does not move like its neighbors
e window size is too large
e what is the ideal window size? (Seitz)



lterative Refinement

 |terative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards | using the estimated flow field
use bilinear interpolation
Repeat until convergence

(Seitz)



If Motion Larger: Reduce the
resolution (Seitz)




Optical flow result
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Tracking features over many
Frames

 Compute optical flow for that feature for each
consecutive H, |

* \When will this go wrong?
— Occlusions—feature may disappear
* need to delete, add new features

— Changes in shape, orientation
e allow the feature to deform

— Changes in color

— Large motions

 will pyramid techniques work for feature
tracking?

(Seitz)



Applications:

« MPEG—application of feature tracking
— http://www.pixeltools.com/pixweb2.html

= Motion Compensated Frame 3 Type P
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(Seitz)




Image alignment

e Goal: estimate
single (u,v)
translation for entire
Image
— Easier subcase:

solvable by
pyramid-based
Lukas-Kanade

(Seitz)



Summary

« Matching: find translation of region to
minimize SSD.
— Works well for small motion.
— Works pretty well for recognition sometimes.

 Need good algorithms.

— Brute force.
— Lucas-Kanade for small motion.
— Multiscale.

e Aperture problem: solve using corners.
— Other solutions use normal flow.



