Multiscale

Announcements

- Demo of PS4
- Problems compiling c on Macs?

Image Matching

- Matching whole images

 For alignment, eg., mosaicing

 Matching small regions

 Eg., for stereo
- Matching Objects

Feature-based Matching

1. Find distinctive features

- Corners, blobs, MSER...
- 2. Describe region around feature
 - Intensities, SIFT, ...
- 3. Compare features to find matches
 - Local matches: Histogram comparison, normalized correlation...
 - Global matches: RANSAC
- 4. Use these matches
 - Find rigid alignment of images, compute disparity from each match, compute similarity score.

Example: Mosaicing

Why extract features?

Step 1: extract features Step 2: match features

Why extract features?

Step 1: extract features Step 2: match features Step 3: align images

Plan for next 5 classes

Features

- Blobs
 - Multiscale
 - While we're talking about this, brief detour into texture.
- Corners
- SIFT descriptors
 - Histogram of gradients
 - Compare using histogram comparison
- Alignment
- Matching RANSAC
- Putting Mosaicing together

Why Multiscale

- To look at images at different sizes
- To analyze images at different scales.
 - Eg., key points (such as blobs) might exist at different scales.
 - Eg., video with large motion will have small motion at after we shrink images.
- Efficiency; fewer operations needed for small image.

The Gaussian Pyramid

High resolution

(Weizmann Institute Vision Class)

Texture

- Edge detectors find differences in overall intensity.
- Average intensity is only simplest difference.

Issues: 1) Discrimination/Analysis

(Freeman)

2) Synthesis

The Goal of Texture Synthesis

Many more issues

3. Texture boundary detection. 4. Shape from texture.

(www.cmap.polytechnique.fr/ ~maureen/vasarely3.jpg)

What is texture?

- Something that repeats with variation.
- Must separate what repeats and what stays the same.
- Model as repeated trials of a random process
 - The probability distribution stays the same.
 - But each trial is different.
 - This may be true (eg., pile of objects)
 - Or not really (tile floor).

Simplest Texture

- Each pixel independent, identically distributed (iid).
- Examples:
 - Region of constant intensity.
 - Gaussian noise pattern.
 - Speckled pattern

Texture Discrimination is then Statistics

- Two sets of samples.
- Do they come from the same random process?

Simplest Texture Discrimination

- Compare sample distributions (histograms).
 - Divide intensities into discrete ranges.
 - Count how many pixels in each range.

Histograms of Filters

- We saw two textures with different intensity histograms.
- Square vs. dots
 - Same intensity histogram
 - Different histograms of derivatives
- Uniform squares vs. clustered
 - Same histograms of derivatives
 - Different if you smooth first
- Bright Diamonds vs. squares.
 - Same horizontal and vertical derivatives
 - Different when considered jointly (or different orientations)

Multi-scale Spots and Oriented Bars (Malik and Perona)

Textons

- Apply bank of filters.
- Represent each pixel with highdimensional vector (one dim. for each filter).
- Cluster with K-means
- Build histogram using cluster center.

Chi square distance between texton histograms

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature has a distinctive description
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion (Slides from Lazebnik)

Distinctive Features

- A point is distinctive when it looks different from its neighbors.
- A blob also looks different from neighbors at different scales.

A corner (in computer vision) is technically defined as a region where the intensity pattern changes a lot with any small translatiion.

However, a corner isn't well localized in scale.

For that we need blobs

What is a good blob detector?

- A filter that has versions at multiple scales.
- The biggest response should be when the filter has the same location and scale as the blob.

Center-Surround Filter

 When does this have biggest response?

- When inside is as dark as possible
- And outside is as light as possible.
- le, a dark spot.
- Note, this locates position and scale.
- Similar filters are in animals (eg., frog).

Difference of Gaussian

Basic Algorithm

- Filter with Gaussian at different scales
 This is done by just repeatedly filtering with the
 - same Gaussian.
- Subtract image filtered at one scale with image filtered at previous scale.
- Look for local extrema
 - A pixel is bigger (smaller) than all eight neighbors, and all nine neighboring pixels at neighboring scales.

Which Scales

- More scales can produce greater accuracy.
- But also more expense.
- We are taking a derivative, so need to be careful about denominator.
 - It turns out that we should increase scale multiplicatively. Sigma, k*sigma, k*k*sigma....
 - Sigma = 1.6 produces reasonable results.
 - k = cuberoot(2). (These values are heuristic).

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

om Lazebnik)

Efficient implementation

 Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian)
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

