
Neural Networks

1 What a Neural Network Computes
To begin with, we will discuss fully connected feed-forward neural networks, also
known as multilayer perceptrons. A feedforward neural network consists of layers of
computational units. This network transforms a vector of input features into a vector
of outputs. The input layer consists of a set of units that each represent one of the
input features. Each subsequent layer receives input from the previous layer; each unit
receiving input from all of the units in the previous layer. The output layer represents
a vector of the outputs.

We can divide the computation of a unit into a linear and nonlinear component.
First, the unit takes a linear combination of all its inputs, along with a (scalar) bias
term. Then it applies a nonlinear function to the result of this linear combination.
For simplicity, we will suppose that the nonlinear function is the same throughout the
network. In practice, the nonlinear function is typically the same for all units in the
same layer, but may be different for different layers.

We can think of this graphically, with each computational unit a node in a graph,
and edges denoting the input to each node from the previous layer. We can provide
weights at each edge which indicate the coefficient of the linear combination of values
leading to a unit. We let wl

jk denote the weight of the edge from the k’th neuron in
layer l− 1 to the j’th unit in layer l. We use blj to denote the bias value for neuron j in
layer l. alj denotes the activation of this unit (that is, its output). We can write this as:

alj = σ

(∑
k

wl
jka

l−1
k + blk

)

Here σ denotes the nonlinear function that we use.
We can write this in matrix/vector form. Let wl denote a matrix containing all the

weights in layer l. Each row of wl gives the weights for one unit. We let bl be a vector
of all the bias values, and al denote a vector of the outputs at layer l. We also abuse
notation, by applying σ to a vector, producing a vector output in which we apply σ
componentwise to the elements of the vector. Then we can write:

al = σ(wlal−1 + bl)

It will also be convenient to abbreviate zl = wlal−1 + bl, so that al = σ(zl). So zl is
just the output before we apply the non-linearity.

1.1 Non-linear functions
There are a wide range of possible non-linear functions that can applied. First, we can
use threshold type functions, that turn zl into a set of binary values. For example, the
Sign function turns positive values to +1 and negative values to -1. We used this in the
perceptron, and it is natural at least at the output layer when we want the output of the

1



network to be zero. This has also been inspired by real neurons, which tend to not fire
at all, when their output is below a certain level, and then to begin to fire above some
threshold. However, one problem with these functions is that they are not differentiable
and not suitable for gradient descent. Actually, the problem isn’t so much that they are
not continuous at 0, but that they saturate, so that they have zero derivative almost
everywhere.

A second long-used non-linearity is the sigmoid function:

sigmoid(z) =
1

1 + e−z

Note that this takes on values from 0 (when z = −∞) to 1 (when z =∞). Most of the
action occurs in a small range, when z is between about −4 and 4. A closely related
nonlinear function is tanh.

tanh(z) =
ez − e−z

ez + e−z

These are related as:
tanh(z) = 2σ(2z)− 1

This is a little prettier, in that its values go from -1 to 1, instead of 0 to 1. Sigmoid and
tanh also saturate, making gradient based learning more difficult.

More recently, RELU has become very popular.

RELU(z) = max(0, z)

The feeling is RELU is better for learning because it doesn’t saturate so easily. It does
have the odd property that it is unbounded, so that if z is large, RELU(z) is large.

There are other types of nonlinear functions that can be used. Notably, we will
see max pooling, which instead of linearly combining the inputs, combines them non-
linearly by taking the max. We will look at this when we discuss convolutional neural
nets. Goodfellow also says that many other nonlinearities are tried that work about as
well as the ones discussed above. These generally don’t get discussed in the literature,
because they are not regarded as interesting contributions.

1.2 What if we use a linear function?
It’s also worth considering what happens if instead of using a nonlinear function, we
ignore this step in one of the layers, so that:

al = wlal−1 + bl

Let’s consider doing this for the case of a three layer network with one hidden layer.
We will keep the final nonlinearity, but remove the nonlinearity in the hidden layer. We
then have:

a2 = σ(w2a1 + b2) = σ(w2(w1a0 + b2) + b1)

where a0 is just the input. We can write this as:

a2 = σ(Wa0 + b)

2



where W = w2w1 and b = w2b2 + b1. Note that this is equivalent to a two-layer
network.

So we might think that there is no point to having the hidden layer in this case.
Actually, this isn’t necessarily the case, if the hidden layer doesn’t have too many units.
Let’s suppose the input vector is length n, the output is length m, and the hidden layer
has k units. Then w1 is a k×n matrix, and w2 is m× k. If k < m,n then W has rank
k. This means the set of possible outputs has lower dimension that the input or output
space. We can think of this network as projecting the inputs into a lower-dimensional
linear subspace of the output space. Potentially, we use many fewer parameters with
such a network than we would with a two-layer network that connected n inputs to m
outputs. In fact, if we use a loss function that attempts to match the output to the input,
this network will learn to perform Principle Component Analysis.

1.3 Example: XOR
Let’s work through a simple but classic example that shows the value of a hidden layer.
XOR. We have inputs, and their labels, of (0, 0), 1, (1, 0), 0, (0, 1), 0 and (1, 1), 1.
Clearly, we can’t handle this with a perceptron. because this computes a linear function
of the input followed by a threshold. So the decision boundary is linear. But these
inputs are not linearly separable.

To handle this with a three layer network with RELU, let’s first consider what it is
that one of the hidden units computes. We have:

a11 = max(0, w1
1:a

0 + b11)

where w1
1: is the first row of w1. In this case, z11: is a linear function of the input. Then

we take the max of this and zero. Note that z11: = 0 defines a hyperplane that divides
the input space into two halves. z11: is zero over one halfspace, and linear over the other
half space. The gradient of z11: is orthogonal to this hyperplane.

So suppose, for example, that w1
1: = (−1 − 1) and b11 = .5. Then the first hidden

unit is associated with the line x1 + x2 = .5. It’s output is zero on this line, and
everywhere above the line. Below the line, its output is proportional to the distance
from the line to the input. This line divides the point (0, 0) from the other three points.
Similarly, we can separate (1, 1) from the other points with w1

2: = (1, 1) and b12 =
−1.5. This corresponds to a line at x1 + x2 = 1.5, with the non-negative part above
the line.

Then, if we just add the outputs of these two hidden units, ie w2
1: = (1, 1), b21 = 0

we get a function that is zero for the inputs (1, 0) and (0, 1) and positive for (0, 0) and
(1, 1).

1.4 A geometric interpretation of a three layer network with RELU
(Advanced and Optional)

We can generalize this geometric interpretation to any three layer network. We can
think of each unit as defining a hyperplane in which the z value of the unit (its output
before RELU) is equal to zero. Then the unit will have zero output on one side of

3



this hyperplane, and will compute a linear function on the other side. Moreover, the
gradient of this linear function will be orthogonal to the hyperplane.

We can now think of these hyperplanes as forming an arrangement in the input
space. That is, they divide the input space into convex regions bounded by hyperplanes.
Inside a given region, all the hidden units compute linear functions (some of which are
identically zero). This means that if we take a linear combination of the hidden units,
this will also be a linear function within the region. So the z value computed by an
output unit will be linear within each region, and piecewise linear over the whole input
space. It will also be continuous over the input space, since it is the sum of continuous
functions.

Note that while the number of weights grows linearly with the number of hidden
units, the number of regions can grow much faster than that. For example, with a 2D
input space, we can still get O(n2) regions, and we can get more in higher dimensional
spaces. This means from equation counting that the number of possible piecewise
linear functions we can produce in these regions is much larger than the number of
parameters we have. So not all piecewise linear functions can be acheived by a given
network. In particular, if we have n hidden units we can form any arrangement of
regions from any n hyperplanes, but we are constrained as to the linear functions we
can compute in these regions. In general, knowing the linear functions in O(n) regions
will determine the functions that can be computed in the rest. There’s not really a good
simple representation of this constraint, though.

Suppose we wish to use a network to perform classifcation of the input into two
classes, using an output layer that just thresholds the output values into two classes,
just like the Perceptron. Then we can show as a lemma, that if a network perfectly
classifies this data, then every region defined by the hidden layers must be linearly
separable. This follows from the fact that the output unit computes a linear function in
each region. Unfortunately, because of the constraints on the linear functions we can
compute across different regions, this is a necessary but not a sufficient condition for
perfect classification.

We can use this to get some bounds on classification problems. For example, sup-
pose we have a triangle of positive examples, surrounded by negative examples. What
is the fewest hidden units we can use to get perfect classification performance.

It’s pretty easy to see that one unit isn’t enough. No one unit can divide the data into
two linearly separable regions. But two units can. However, can we actually achieve
perfect classification? The answer is, not really. Consider a line through the triangle,
and graph the z value of the output unit along this line. It must be linear inside the
triangle, and linear outside, with three linear pieces. Unless the function is constant
inside the triangle, it’s impossible to threshold it to perfectly divide the inside from the
outside.

However, we can get classification with three lines. Consider lines that are the
sides of the triangle and facing outward. All negative examples have positive values for
the hidden units, while the positive examples create zero outputs for the hidden units.
We can combine these to get outputs of different signs for the positive and negative
examples.

Suppose instead of one triangle, we have n triangles. If they are in general position,
we can see that we need at least O(n) hidden units to classify things perfectly. It’s

4



not clear that this bound can be acheived, though. For example, we can’t just apply
the construction we had for one triangle to two. The units for one triangle will also
compute non-negative values for the other triangle.

2 Training
Now we consider how to train a neural network. As with the Perceptron, the idea
is to define a loss function, and then perform gradient descent on the weights of the
network to minimize the loss. We first consider some loss functions, then the approach
to gradient descent known as back propagation.

2.1 Loss Functions
We’ll start with the simplest loss function.

2.1.1 Quadratic Loss

Above I referred to the input as a0. I’ll also just call this x. The desired output will then
be called y(x). Given an input x, we can denote the output of the network as aL(x),
where L denotes the number of layers. So quadratic loss is:

Cquadratic =
1

2n

∑
x

‖y(x)− aL(x)‖2

Note that n is the number of training examples.
This loss is often used for regression. That is, we have some continuous value

that we want the network to produce, so we penalize according to the sum of square
difference between the desired output and the actual output. This is, for example, the
loss that we would typically minimize with linear regression.

2.1.2 Cross-entropy

See around Eq. 6.12 in Goodfellow, or Chapter 3 in Nielson.
First, recall the entropy of a random variable, x, is:

E(−log(p(x))) =
∫
x

−p(x) log(p(x))dx

If log is base 2, this is the average number of bits needed to code instances of this
random variable.

For the cross-entropy, we take

E(−log(pmodel(y|x))) =
∫
x,y

−p(x, y) log(pmodel(y|x))d(x, y)

That is, we assume we have a model (ie a network) that given x can produce an estimate
of the probability distribution of the output, y. Then we take the expected value of the

5



log of these probabilities. To estimate this from a sample, we take:

Ccross−entropy = − 1

n

∑
x,y

log(pmodel(y|x)

Suppose, to make this concrete, that we have a single output node, so that aL is a
scalar. And suppose that our label is binary, so y is 0 or 1. We can interpret aL as the
probability that y is 1. Then our loss would be:

C = − 1

n

∑
x,y

y log aL + (1− y) log(1− aL)

So the difference between this and the quadratic loss is that with the quadratic loss,
if we want an output of 1 and get an output of y instead, the loss is (1 − y)2, whereas
with the cross-entropy loss, the loss would be − log(y).

Notice that the cross-entropy is 0 when the network output matches the label, and
gets bigger the more they are mismatched. When a is far from y, the cross-entropy
grows much more rapidly than the quadratic loss, which means that there is a much
bigger gradient when we are far from the right answer, which can help convergence
(see Nielson, chapter 3).

2.1.3 Other loss functions

There are lots of other loss functions, many of which we’ll see throughout the course.
Sometimes, the main contribution of a paper is to design a loss function that is appro-
priate for the problem being solved. I’ll just mention one class of loss functions, which
is to regularize the solution. This can be done, for example, by adding a term based on
the norm of the weights, so we not only try to fit the training data, but try to do this
with as small weights as possible. This can be viewed as a version of trying to find a
simple solution.

2.2 Backpropagation
Now we consider how to find the weights that minimize the loss over the training data.
The main idea is to do this using gradient descent. So at each iteration, we try to change
the weights to reduce the loss as much as possible. To do this, we need to compute:

∂C

wl
jk

for all l, j, k.

2.2.1 The Chain Rule

In writing the cost above, we haven’t written it directly as a function of the weights,
we’ve written it as a function of aL, the output of the network. aL depends on the
weights and the input, so we could write out the loss as a function of all of these, and

6



then take partial derivatives. But this would be extremely messy. After all, we use
the a values to simplify our description of the network with modularity. But also, this
will make the partial derivatives simpler, by avoiding dupication of effort when we
compute closely related partials. For example, w1

11 and w1
12 both influence z11 . But

then, the way changes in z11 influence the cost is the same for both. So we save effort
by only computing the effect of this change once for all the weights that influence

The chain rule states:
∂h

∂x
=
∂h

∂f

∂f

∂x

As an example, suppose y = x2 + 7 and z = cos y. We could say:

z = cos(x2 + 7)

Then when we compute:
z′ = −2x sin(x2 + 7)

we are using the chain rule. We are saying:

∂z

∂y
= − sin(y)

and
∂y

∂x
= 2x

so:
∂z

∂x
=
∂z

∂y

∂y

∂x
= (− sin(y))2x = − sin(x2 + 7)2x

2.2.2 Neural Nets

Ok, so let’s see what happens when we use the chain rule on a fragment of a neural
network. To simplify notation, I’ll just use a simple set of variables. Let’s say:

z =
∑
i

wixi + b

wherewi are the weights, which can change, and xi are the inputs, which are held fixed
while we compute the partial derivatives. Next, let’s say:

a = σ(z)

where σ(z) = 1
1+e−z . And let’s say the loss is C = (y − a)2. Here y is the training

label, so it’s also fixed. We want to compute ∂C
∂wi

. We have:

∂C

∂wi
=
∂C

∂a

∂a

∂z

∂z

∂wi

Then we can compute:
∂C

∂a
= −2(y − a)

7



We also have:
dσ(z)

dz
=

e−z

(1 + e−z)2
=

(
1 + e−z − 1

1 + e−z

)(
1

1 + e−z

)
= (1− σ(z))σ(z)

So, that is:
∂a

∂z
= (1− a)a

Finally, we have:
∂z

∂wi
= xi

So to compute ∂C
∂wi

we first run the network, which gives us the value of a. Then we
can compute:

∂C

∂wi
= −2(y − a)(1− a)axi

Note that if we want to compute this for multiple values of wi, we don’t need to recom-
pute −2(y − a)(1 − a)a. That computation can be shared. In fact, if we have a more
complex network, we can share a lot more. We can work this out for a full network
with a hidden layer in Figure 1.

Note that I haven’t written out all the intermediate values that we can use. For
example, we can compute ∂C

∂z2
1
= ∂L

∂a2
1

∂a2
1

∂z2
1

, and then whenever we need this, which we
will over all the nodes in the previous layer, we don’t have to recompute the product.

This is an example. We can now write this in a more general form. First we’ll
introduce the abbreviation, δlj =

∂C
∂zl

j

. This captures how sensitive the cost is to changes
in the output of each neuron (before its non-linearity). We can also talk about the vector
of these, δl.

We can write:
δLj =

∂C

∂aLj
σ′(zLj )

This is just use of the chain rule. We can write this in vector form as:

δL = ∇aC ◦ σ′(zL)

Here ◦ is the Hadamard (componentwise) product, and a denotes aL.
Next, we can write each δl in terms of subsequent ones. This gives us:

δl = ((wl+1)T δl+1) ◦ σ′(zl)

This is also just application of the chain rule. That tells us that δl = δl+1 ∂zl+1

∂al
∂al

∂zl .
The first partial gives us the wl+1.

Using these, we can then get:

∂C

∂blj
= δlj ,

∂C

∂wl
jk

= al−1k δlj

This is again through the chain rule, and because
∂zl

j

∂wl
jk

= al−1k because the z value is

just the weighted sum of the a values of the previous layer (and with the bias term, the
weight is applied to just a 1 instead of an a value).

We can think of these equations as propagating the δ values backwards, recursively.

8



Figure 1: Backpropagation

2.3 Optimization
2.3.1 Stochastic Gradient Descent

Computing the gradient requires looking at all the training examples. Instead, we di-
vide the data into mini-batches, and compute the gradient just based on the mini-batch.
This gives us a random gradient whose expected value is the true gradient.

2.3.2 Step size and momentum

The learning rate determines how big a step you take in the direction of the gradient.
Generally, the learning rate needs to be decreased over time. Intuitively, as you get
closer to a minimum, you need to take smaller steps to avoid overshooting it. This is
generally adjusted in a heuristic way.

When using momentum, you move in the direction of the weighted average of

9



previously computed gradients. This can reduce the noise in the gradient direction.
Noise can be due to the stochastic gradient descent, or to a cost function with an ill-
conditioned Hessian, so the gradient changes very rapidly. This can cause the gradient
you compute to change very rapidly.

2.3.3 Initialization

One principal is to avoid symmetries in initialization, avoiding saddle points or local
maxima. Generally initialize weights randomly.

Example: what happens when we initialize weights to be zero.

2.3.4 Local Minima

They can occur. Note that one reason is that two networks can be equivalent (eg.,
they have different hidden units that compute the same thing). These aren’t a problem.
What’s a problem is when we hit local minima with much more error that the global
minimum. We’ll discuss this problem in a subsequent class.

2.4 Regularization
2.4.1 Early Stopping

Use a validation set. If error on the training set continues to go down, but error on
the validation set starts to go up, use the trained network with the lowest error on the
validation set. This can be shown in some cases to be a kind of regularization, but
really it’s a useful heuristic.

2.4.2 Dropout

When training the network, randomly drop out some units, by setting their output to
zero. The claim is that this is somewhat like training a large ensemble of networks, and
combining the results. To use the trained network, you multiply each unit’s output by
the probability that it hasn’t dropped out.

2.4.3 Batch Normalization

• Motivation: note that when we computed gradients for backpropagation, the gra-
dient with respect to a weight often depended on the value that that weight was
being multiplied by (the output of the previous layer). This makes it difficult to
decide on a step size, since if the outputs get big (small) the step size implicitly
gets bigger (smaller) for that layer, relative to others. Normalizing each layer’s
output gives us more uniform steps.

• Add a nonlinearity between layers that subtracts the mean of the outputs and
scales them to have unit variance. Therefore, the inputs to each layer from each
unit at the previous layer will be zero mean unit variance, over the mini-batch.

10



• Don’t make the network output have identity covariance matrix, since this would
require too much data from the mini-batch.

• Normalization is taken into account when performing a gradient descent step,
which is straightforward since the normalization can also be differentiated.

• This would result in having the inputs to a layer always lie near 0, which might
not be desirable. So they also add an affine transformation to each layer that
adds an offset and scales the values output by that layer (just two parameters for
the whole layer). This would, in theory, allow the network to learn to undue the
normalization.

• At test time, we also have to do normalization, but we may just have one test item.
So we freeze the normalization, computing statistics based on all the training
data.

2.5 Other Considerations
2.5.1 Dataset Augmentation

Generally, the more data you have the better. If your data is limited, sometimes you
can use it to generate new data. Often, this is done in a simple way, such as jittering
images of characters with small amounts of translation. This is good, because the new
data is quite similar to data that you might have collected, if you had more time. But it
doesn’t necessarily show the full range of variation that truly new data would have. If
you only have examples of one type of ”4”, this won’t give you other types.

Sometimes people do much more sophisticated things for dataset augmentation.
For example, you can try to deform your examples, or change their colors.

2.5.2 Grid Search for Hyperparameters

2.5.3 Fine Tuning

11


