
1

When motion is small: Optical Flow

• Small motion: (u and v are less than 1 pixel)
– H(x,y) = I(x+u,y+v)

• Brute force not possible

• suppose we take the Taylor series expansion of I:

(Seitz)

Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this

becomes exact

(Seitz)

2

Optical flow equation

• Q: how many unknowns and equations per
pixel?

• Intuitively, what does this constraint

mean?
– The component of the flow in the gradient

direction is determined

– The component of the flow parallel to an edge

is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)

Let’s look at an example of this. Suppose we have an image in which H(x,y) = y.

That is, the image will look like:

11111111111111

22222222222222

33333333333333

And suppose there is optical flow of (1,1). The new image will look like:

-1111111111111

-2222222222222

I(3,3) = 2. H(3,3) = 3. So It(3,3) = -1. GRAD I(3,3) = (0,1). So our constraint

equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 = v. We recover the v

component of the optical flow, but not the u component. This is the aperture

problem.

3

First Order Approximation

When we assume:

We assume an image

locally is:

(Seitz)

v
y

I
u
x

I
yxIvyuxI

∂

∂
+

∂

∂
+≈++),(),(

Aperture problem

(Seitz)

4

Aperture problem

(Seitz)

Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea: impose additional constraints

• most common is to assume that the flow field is smooth

locally

• one method: pretend the pixel’s neighbors have the

same (u,v)

– If we use a 5x5 window, that gives us 25 equations per

pixel!

(Seitz)

5

Lukas-Kanade flow

• We have more equations than unknowns: solve least
squares problem. This is given by:

– Summations over all pixels in the KxK window

– Does look familiar? (Seitz)

Let’s look at an example of this. Suppose we have an image with a corner.

1111111111 -----------------

1222222222 And this translates down and to the right: -1111111111

1233333333 -1222222222

1234444444 -1233333333

Let’s compute It for the whole second image:

---------- Ix = ---------- Iy = -------------

0-1-1-1-1-1 --00000 --------------

-1-1-1-1-1-1 --.50000 -0-.5-1-1-1-1-1-1

-1-1-1-1-1-1- --1.5000 -00-.5-1-1-1-1-1

Then the equations we get have the form:

(.5,-.5)*(u,v) = 1, (1,0)*(u,v) = 1, (0,-1)(u,v) = 1.

Together, these lead to a solution that u = 1, v = -1.

6

Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible

• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of A
TA should not be too small

• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)

Does this seem familiar?

Formula for Finding Corners












=

∑∑
∑∑

2

2

yyx

yxx

III

III
C

We look at matrix:

Sum over a small region,

the hypothetical corner

Gradient with respect to x,

times gradient with respect to y

Matrix is symmetric WHY THIS?

7









=












=

∑∑
∑∑

2

1

2

2

0

0

λ

λ

yyx

yxx

III

III
C

First, consider case where:

This means all gradients in neighborhood are:

(k,0) or (0, c) or (0, 0) (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0 and λ2 = 0?

4. λ1 > 0 and λ2 > 0?

General Case:

From Singular Value Decomposition it follows

that since C is symmetric:

RRC 







= −

2

11

0

0

λ

λ

where R is a rotation matrix.

So every case is like one on last slide.

8

So, corners are the things we

can track

• Corners are when λ1, λ2 are big; this is
also when Lucas-Kanade works.

• Corners are regions with two different

directions of gradient (at least).

• Aperture problem disappears at

corners.

• At corners, 1st order approximation fails.

Edge

– large gradients, all the same

– large λ1, small λ2
(Seitz)

9

Low texture region

– gradients have small magnitude

– small λ1, small λ2
(Seitz)

High textured region

– gradients are different, large magnitudes

– large λ1, large λ2
(Seitz)

10

Observation

• This is a two image problem BUT
– Can measure sensitivity by just looking at one of

the images!

– This tells us which pixels are easy to track, which

are hard

• very useful later on when we do feature tracking...

(Seitz)

Errors in Lukas-Kanade

• What are the potential causes of errors in this
procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

• When our assumptions are violated

– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

• window size is too large

• what is the ideal window size? (Seitz)

11

Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations

2. Warp H towards I using the estimated flow field

- use bilinear interpolation

- Repeat until convergence

(Seitz)

If Motion Larger: Reduce the

resolution (Seitz)

12

Optical flow result

Dewey morph (Seitz)

Tracking features over many

Frames

• Compute optical flow for that feature for each
consecutive H, I

• When will this go wrong?

– Occlusions—feature may disappear

• need to delete, add new features

– Changes in shape, orientation

• allow the feature to deform

– Changes in color

– Large motions

• will pyramid techniques work for feature

tracking?

(Seitz)

13

Applications:

• MPEG—application of feature tracking

– http://www.pixeltools.com/pixweb2.html

(Seitz)

Image alignment

• Goal: estimate
single (u,v)
translation for entire
image

– Easier subcase:
solvable by
pyramid-based
Lukas-Kanade

(Seitz)

14

Summary

• Matching: find translation of region to
minimize SSD.
– Works well for small motion.

– Works pretty well for recognition sometimes.

• Need good algorithms.
– Brute force.

– Lucas-Kanade for small motion.

– Multiscale.

• Aperture problem: solve using corners.
– Other solutions use normal flow.

