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When motion is small: Optical Flow

• Small motion:  (u and v are less than 1 pixel)
– H(x,y) = I(x+u,y+v)

• Brute force not possible

• suppose we take the Taylor series expansion of I:

(Seitz)

Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this 

becomes exact

(Seitz)
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Optical flow equation

• Q:  how many unknowns and equations per 
pixel?

• Intuitively, what does this constraint 

mean?
– The component of the flow in the gradient 

direction is determined

– The component of the flow parallel to an edge 

is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)

Let’s look at an example of this.  Suppose we have an image in which H(x,y) = y.  

That is, the image will look like:

11111111111111

22222222222222

33333333333333

And suppose there is optical flow of (1,1).  The new image will look like:

-----------------------

-1111111111111

-2222222222222

I(3,3) = 2.  H(3,3) = 3.  So It(3,3) = -1.  GRAD I(3,3) = (0,1).  So our constraint 

equation will be: 0 = -1 + <(0,1), (u,v)>, which is 1 = v.  We recover the v 

component of the optical flow, but not the u component.  This is the aperture 

problem.
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First Order Approximation

When we assume: 

We assume an image 

locally is:

(Seitz)
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Aperture problem

(Seitz)
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Aperture problem

(Seitz)

Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea:  impose additional constraints

• most common is to assume that the flow field is smooth 

locally

• one method:  pretend the pixel’s neighbors have the 

same (u,v)

– If we use a 5x5 window, that gives us 25 equations per 

pixel!

(Seitz)
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Lukas-Kanade flow

• We have more equations than unknowns: solve least 
squares problem.  This is given by:

– Summations over all pixels in the KxK window

– Does         look familiar? (Seitz)

Let’s look at an example of this.  Suppose we have an image with a corner.

1111111111                                                      -----------------

1222222222    And this translates down and to the right: -1111111111   

1233333333                                                      -1222222222

1234444444                                                      -1233333333

Let’s compute It for the whole second image:  

---------- Ix =  ---------- Iy = -------------

0-1-1-1-1-1            --00000          --------------

-1-1-1-1-1-1           --.50000         -0-.5-1-1-1-1-1-1

-1-1-1-1-1-1- --1.5000         -00-.5-1-1-1-1-1

Then the equations we get have the form:

(.5,-.5)*(u,v) = 1,    (1,0)*(u,v) = 1,   (0,-1)(u,v) = 1.  

Together, these lead to a solution that u = 1, v = -1.
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Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of A
TA should not be too small

• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)

Does this seem familiar?  

Formula for Finding Corners
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We look at matrix:

Sum over a small region, 

the hypothetical corner

Gradient with respect to x, 

times gradient with respect to y

Matrix is symmetric WHY THIS?



7









=












=

∑∑
∑∑

2

1

2

2

0

0

λ

λ

yyx

yxx

III

III
C

First, consider case where:

This means all gradients in neighborhood are:

(k,0)   or   (0, c)   or    (0, 0)  (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0   and   λ2 = 0?

4. λ1 > 0   and   λ2 > 0?

General Case:

From Singular Value Decomposition it follows 

that since C is symmetric:

RRC 
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where R is a rotation matrix.

So every case is like one on last slide.
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So, corners are the things we 

can track

• Corners are when λ1, λ2 are big; this is 
also when Lucas-Kanade works.  

• Corners are regions with two different 

directions of gradient (at least).

• Aperture problem disappears at 

corners.

• At corners, 1st order approximation fails.

Edge

– large gradients, all the same

– large λ1, small λ2
(Seitz)
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Low texture region

– gradients have small magnitude

– small λ1, small λ2
(Seitz)

High textured region

– gradients are different, large magnitudes

– large λ1, large λ2
(Seitz)
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Observation

• This is a two image problem BUT
– Can measure sensitivity by just looking at one of 

the images!

– This tells us which pixels are easy to track, which 

are hard

• very useful later on when we do feature tracking...

(Seitz)

Errors in Lukas-Kanade

• What are the potential causes of errors in this 
procedure?
– Suppose ATA is easily invertible

– Suppose there is not much noise in the image

• When our assumptions are violated

– Brightness constancy is not satisfied

– The motion is not small

– A point does not move like its neighbors

• window size is too large

• what is the ideal window size? (Seitz)
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Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations

2. Warp H towards I using the estimated flow field

- use bilinear interpolation

- Repeat until convergence

(Seitz)

If Motion Larger: Reduce the 

resolution (Seitz)
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Optical flow result

Dewey morph (Seitz)

Tracking features over many 

Frames

• Compute optical flow for that feature for each 
consecutive H, I

• When will this go wrong?

– Occlusions—feature may disappear

• need to delete, add new features

– Changes in shape, orientation

• allow the feature to deform

– Changes in color

– Large motions

• will pyramid techniques work for feature 

tracking?

(Seitz)
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Applications:

• MPEG—application of feature tracking

– http://www.pixeltools.com/pixweb2.html

(Seitz)

Image alignment

• Goal:  estimate 
single (u,v) 
translation for entire 
image

– Easier subcase:  
solvable by 
pyramid-based 
Lukas-Kanade 

(Seitz)
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Summary

• Matching: find translation of region to 
minimize SSD.
– Works well for small motion.

– Works pretty well for recognition sometimes.

• Need good algorithms.
– Brute force.

– Lucas-Kanade for small motion.

– Multiscale.

• Aperture problem: solve using corners.
– Other solutions use normal flow.


