
 
 

Problem Set 2 – K-Means Clustering and Vector Quantization 
CMSC 426. 
Due Feb. 19 

 
Programming Assignment 
 

For this assignment, you will implement the k-means clustering algorithm and use 
it to perform vector quantization on a color image.  You can test the various 
stages of your program using the function ps2, which is available on the class web 
page.  I will show you the results of my program for each part of the problem.  
However, there are some choices to be made in how you represent the 
intermediate results of your program.  You can do it as I did, or in a different way, 
as long as you document your choices.  You are also free to change the number 
and meaning of the arguments of each function, as long as you document your 
choices.  For each problem, your writeup should mention any changes you make 
to the representation, but can be minimal if there isn’t much to say. 

 
 

1. 15 Points: Implement a function, D = cluster_points_distance(cs, ps), to 
compute the squared distance between a set of points and a set of cluster centers.  
For color quantization, each “point” will represent the color at a single pixel.  So 
it will be a 3D point, holding RGB values.  The cluster centers are also a set of 3D 
points.  Of course, there is nothing in the process of computing distance that 
depends on the points representing colors. 

 
I choose to represent the points, ps, using a 3xn matrix, in which each column 
holds the coordinates of a single 3D point.  Similarly, cs is a 3xk matrix 
representing cluster centers.  This is illustrated at the top of ps2, where I assign 
simple test values to the variables cs and ps.  I find this convenient, but you could 
do something different.  For example, you could represent points using a 3D 
matrix that is just like a color image.  My way, you’ll have to convert a color 
image to my representation, but my representation is simpler in some ways too.   
 
My function cluster_points_distance then returns the distances in a kxn matrix, D.  
So D(i,j) holds the squared distance between cluster center i, which is in cs(:,i), 
and point j, which is in ps(:,j). 
 
Running my program looks like: 
 
>> ps2(1) 
 
D = 
 
     6    22   105 



    17     3    26 
 
>> 
 

2. 15 points: Next, implement mems = cluster_members(cs, ps).  This 
function figures out which cluster each point belongs to.  That is, point one 
belongs to cluster one if it is closer to that cluster center than to any other.  I 
choose to represent the result with a vector, mems, which has length n.  Every 
element of mems is a number between 1 and k.  So if mems(i) = j, this means that 
point i belongs to cluster j.  Again, you are free to represent cluster membership in 
a different way, but please explain any different choices you make in your code 
and writeup.  Running my program produces the result: 

 
>> ps2(2) 
 
mems = 
 
     1     2     2 
 
>> 
 
 

3. 15 points: Next, implement csnew = update_centers(ps, mems). This 
creates a new set of cluster centers, given a set of points and their assignment to 
different clusters.  Each new cluster center should be the average of the points 
assigned to that cluster.  If you find it convenient, you might add a 
third argument that tells you the number of clusters.  So, for 
example, csnew(:,1) should be the average of all the points that 
belong to the first cluster (ie., for which mems has a value of 1).  
Running my code produces: 

 
>> ps2(3) 
 
 
csnew = 
 
    1.0000    5.0000 
    2.0000    3.5000 
    1.0000    4.0000 
 
>> 

4. 25 points: Finally, put these together to implement: [cs_final, mems_final] = 
k_means_initialized(cs, ps, maxIterations).  Here, cs represents some 
initial set of cluster centers.  ps represents the points that we want to cluster.  
maxIterations is a maximum number of iterations that the program should 
perform.  In principal, we can keep running k-means until it converges, that is, 
until the assignment of points to clusters does not change.  But for color images, it 



may take a large number of iterations to converge, so you may want to stop it 
before it converges.  cs_final and mems_final will contain the final set of cluster 
centers and the assignment of points to cluster centers.  Running my program 
produces: 

 
>> ps2(4) 
 
cs_final = 
 
    1.5000    8.0000 
    2.5000    4.0000 
    2.0000    5.0000 
 
 
mems_final = 
 
     1     1     2 
 
>> 
 

5. 30 points: Now you can use k-means to quantize an image.  That is, given a color 
image, first select an initial set of cluster centers, and run k-means to select cluster 
centers and assign each pixel to a cluster.  Then create a new image in which each 
pixel is replaced by the color of the cluster center that it belongs to.  This function 
might have the form: J = quantize_image(I, k);  Here I is the input image, 
k is the number of clusters, and J is the final image.  So J should have only k 
different colors in it.  The web site shows the image that I produce running ps2(5).  
This shows a result on the peppers image. In this experiment, I use a maximum of 
200 iterations in K-means. 

 
For your write-up, run your quantize_image program on forest2.jpg (this is the 
same image we used in Problem Set 1).  Generate four images that result from 
using 8, 16, 32, or 64 cluster centers.  Include these images in your writeup, and 
briefly describe what you have learned about the number of  clusters needed for 
good color quantization.  What sorts of errors occur as you have too few clusters?  
What errors do you still see, even using 64 clusters?  Do you have any ideas for 
fixing these problems, besides just using a very large number of clusters?  Also, 
describe your design choices in implementing this. 

 
Hint: Remember that images are uint8 (that is, matrices with 8 bits for each 
number).  Performing mathematical operations on these can produce some weird 
errors, so it might be a good idea to convert these to double (help double) and 
then back to uint8 when you are done (help uint8).   
 
Hint: If your program is slow, which it might be if you use a lot of loops, or are 
running remotely on GLUE, you might want to test this on a small image.  You 



can create your own image by just building a 3D array of uint8.  Or you can 
shrink an image; see help imresize.  If your program is really slow, you can turn 
in your results on smaller versions of the assigned images, for a small loss of 
credit. 
 
Hint:  Sometimes as you run k-means, a cluster will wind up with no points 
assigned to it.  Once this happens, the center of the cluster isn’t defined, and the 
cluster will never get any new points.  It is fine if at the end, k-means produces 
some clusters with no points.  This won’t affect quantization except in that you 
will be wasting some clusters.  But you have to be careful that you handle this 
situation in a way that doesn’t produce other errors.  An even better solution 
would be to remove a cluster once this happens and add a new cluster to replace it.  
You can implement any approach, as long as your program produces reasonable 
results and you document your decision. 
 

6. Challenge Problem 15 points: Color Segmentation.  This problem is getting a 
little ahead of ourselves, because we haven’t talked about segmentation yet, but 
hey, it’s a challenge problem. 

 
The class web page shows six images of leaves on plain backgrounds.  Your task 
is to use K-means to separate each leaf from its background.  You should write a 
function M = segment_leaf(I).  I will be one of the leaf images.  M will be a 
binary matrix (all 0s and 1s).  If M(i,j) == 1, this means that pixel (i,j) is a leaf 
pixel, otherwise it is a background pixel. 
 
One way to approach this problem is by applying K-means to the images, to 
divide the pixels into two groups by their color.  One group may correspond to the 
leaf, and one to the background.  You will also need to figure out which group is 
the leaf, and which is the background.  If you use some parameters, you should 
use the same parameters on all six leaves.  In your writeup, show the result of 
your program on all six images.  A relatively straightforward implementation of 
this idea will work pretty well on some of the images, and not so well on others.  
You will get some partial credit for doing this.  For full credit, try to build on this 
to handle problems like highlights, shadows, and small leaves.  There is a link to a 
paper on the web site that will give you some ideas of what might work, as well as 
explaining why you might want to separate leaves from their background. 
 
Hint: If your programs are slow, it should be ok to shrink images (see imresize) 
before trying to segment them. 

 
 
 


