
Problem Set 3
CMSC 426

Assigned Tuesday, Sept. 27, Due Tuesday, October 11

Background Subtraction 15 points

For this problem, you are given a set of 100 images of background, I1, I2, … I100. and one
test image, J. These are on the class web page in BackgroundImages.zip and
foreground_image.jpg. Your task is to classify each pixel in the test image as either
foreground or background. Suppose pixel J(x,y) has intensity k. To classify it, you
should compute:

Once you’ve computed this for each pixel, you’ll need to choose a threshold, T, so that
you classify all pixels as foreground when P(J(x,y)=k)<T. Choose a value of T by hand
that seems to produce pleasing results. Our results are in
BackgroundSubtractionResults.jpg. Turn in your code, a picture of your result, and
indicate which threshold you used. Our results are included on the class web site for
comparison.

Hint: As usual, you can achieve better performance by minimizing the amount of looping
you do. However, when dealing with 100 images, you must be a little careful to avoid
using up too much memory; in my implementation I do loop through the images rather
than trying to perform some operations on all of them at once.

Challenge Problem: Up to 20 points

See if you can improve on this performance by using a statistical model that does not
assume that every pixel is independent. For example, you could try to model the
distribution of pairs of pixels, or make use of the fact that if I(x,y) = k, it is somewhat
likely that in the next image, I(x+1,y)=k, (to model, for example, the way the trees move
around in the wind). Describe what you did and whether it worked.

Note that this is a vague problem, and I’m not sure whether really good results can be
obtained. But any good ideas that you try will get some credit, whether they work or not.

Texture Synthesis

The goal of this problem is to implement the texture synthesis method of Efros and
Leung. This is described in the paper: ``Texture Synthesis by Non-parametric
Sampling’’, by Efros and Leung, in the International Conference on Computer Vision,
1999. There is a link to their web site on the class web site, which includes links to their
paper and pseudocode for their algorithm. In this assignment, I have simplified their

()() �
=

�
�

�
�
�

� −−==
100

1
2

2

2
)),((exp

2100

1
,

i

i yxIkkyxJP σπσ

algorithm a little bit, to remove some details such as Gaussian weighting, which don’t
seem to be necessary to achieve good performance.

This algorithm takes a sample of some texture and generates a new image containing a
similar texture. The strategy of the algorithm is to generate each new pixel in the image
using a neighborhood of already generated pixels. One looks in the sample for similar
neighborhoods, selects one of these similar neighborhoods at random, and copies the
corresponding pixel into the new image. You are only required to implement this
program for black and white images. You are given code in GrowImageShell.m that has
some parts missing, which you’ll need to fill in

As always in Matlab, it is important to avoid loops to get good performance. It is quite
possible for you to complete this assignment without using any additional loops beyond
the ones I use in GrowImage.

1. SSD 25 points: S will contain a sample of the texture we want to generate.
T contains a small (2n+1)x(2n+1) neighborhood of pixels. Not all the pixels
in this neighborhood have been filled in with valid values however. So M
(the mask) is a (2n+1)x(2n+1) matrix that contains a 1 for each position in
which T contains a valid pixel, and a 0 whenever the corresponding pixel in T
should be ignored. Computing the SSD is like correlation in that we shift the
template over every position in the sample, and compute a separate result for
each position. Thus, the output D is the same size as S. To compute D(i,j) we
shift T so that its center is right on top of S(i,j). Then we take the difference
between each valid pixel in T and the corresponding pixel in S, square the
result, and then add all these together. This computation is described on page
147 of Trucco and Verri, and by Efros and Leung.

To begin, you should write a function called SSD which performs the central
step of the algorithm. This will compute the sum of squared difference
between a little portion of the new image you are making and every portion of
the sample. It should have the form:

function D = SSD(S, T, M)

There are two things that make SSD a bit tricky. The first is that we want to do it
with correlation, rather than with looping. This is partly because this will be more
efficient in Matlab, but also because we want to make concrete for you the
relationship between correlation and SSD as a way of matching a template to an
image. The second thing that’s tricky is that we need to use a mask, M, which
tells us to only perform the computation on some pixels. To separate these issues,
let’s first look at SSD without a mask. We can write SSD mathematically as:

()()� �−= −=
−++= n

ni

n

nj
jiTjyixSyxD 2),(,),(

To see how this is related to correlation, let’s open up the expression:

()()
() ()()
() () � �� �� �

� �

� �

−= −=−= −=−= −=

−= −=

−= −=

+++−++=

+++−++=

−++=

n

ni

n

nj

n

ni

n

nj

n

ni

n

nj

n

ni

n

nj

n

ni

n

nj

jiTjyixSjiTjyixS

jiTjyixSjiTjyixS

jiTjyixSyxD

22

22

2

),(,),(2,

),(,),(2,

),(,),(

The bottom line shows that to compute SSD we can combine 3 separate
summations. You should notice that the middle term is just -2 times the result of
correlating the template, T, with the sample image, S. We know how to compute
this, for example, by using imfilter. This also gives us a sense of the relationship
between SSD and correlation; in general, the higher the correlation between the
template and the sample at some location, the lower the SSD will be. This is why
correlation alone is sometimes used as a way of finding locations where the
template and sample are similar.

The third term does not depend on S, x, or y at all. It only depends on the
template, T. So it doesn’t have to be computed at every point in S, it just has to be
computed once (you should be able to compute it without looping).

So the only problem we have left is to compute the first term:

()� �−= −=
++n

ni

n

nj
jyixS 2,

This only depends on the squared value of the sample image. Given this squared
sample image, we need to add up all the values in a square region of S. You
should try to figure out how to do this using imfilter (and no loops).

Things get a little more complicated when we have a mask. We can write this as:

()()� �−= −=
−++= n

ni

n

nj
jiMjiTjyixSyxD),(),(,),(2

In this case, for every summation, we only want to use the pixels in the template
that are part of the mask. For example, if we make some of the pixels in the
template 0, these will not have any effect when we correlate the template with S,
or when we compute the sum of squared values in the template. When we
compute the first of the three terms in SSD, we must filter the squared sample
values so that we will only count the valid values in the template.

You can test your function using the my_checkerboard function. Execute the call:

SSD(my_checkerboard(3,3),[0 1 1; 1 0 -1; 1 0 0], [1 1 1; 1 1 0; 1 1 1])

and my program produces:

SSD(my_checkerboard(3,3),[0 1 1; 1 0 -1; 1 0 0], [1 1 1; 1 1 0; 1 1 1])
ans =
 4 4 5 7 5 4 2 4 4
 4 4 4 5 4 4 3 4 4
 6 5 3 2 3 5 6 5 4
 7 5 3 0 3 5 8 5 4
 5 4 4 3 4 4 5 4 4
 3 3 5 6 5 3 2 3 4
 2 3 5 8 5 3 0 3 4
 4 4 4 5 4 4 3 4 4
 4 4 3 3 3 4 4 4 4

Turn in a printout of the results, along with your code.

You may be worried about how to compute SSD when the template goes outside
the boundary. Don’t worry about this. You can do anything that produces
reasonable results. For example, you can just use the default values of imfilter,
which treats pixels outside S as if they were 0. This is what I did in the example
above. This will work fine, since these areas then will generally not match your
template very well.

2. 15 points: Using SSD and the pseudocode below, implement the function

FindMatches. This should find all candidate pixels in the sample that have a
neighborhood that is sufficiently similar to the template. In finding the best
matches it is also important that you not loop through the entire image. Here
is one useful Matlab trick for avoiding such loops. You can index into a
matrix using a binary array that is the same size as the matrix. You will then
get back a vector with all the matrix elements that are at locations where the
index was 1. For example:

a = rand(3,3)
a =
 0.5515 0.1027 0.4576
 0.1866 0.7407 0.9439
 0.2879 0.3420 0.9477
>> a(a>.5)
ans =
 0.5515
 0.7407
 0.9439
 0.9477

You might want to write FindMatches so that it takes three inputs: the sample
image, the template, and the mask. Test your program on the same example that
you used in problem 1. Hand in printouts of the results, and of your program.

3. 35 points: Now complete your program, following the skeleton of the code that
we provide. I am also including below the pseudocode given by Efros and
Leung, which is similar to the skeleton in GrowImageShell.m. Test your
program using the checkerboard function to generate a sample checkerboard
pattern, and using the bricks image in brickbw.jpg. Hand in printouts of the
results. Be warned that with this algorithm it can be a bit slow to generate a
large texture, even if you have implemented SSD efficiently. My
implementation takes about 45 seconds to generate a 100x100 image on my
laptop, when I use a value of n=7. Run time grows with n. Your
implementation might be slower if you use WAM computers, but if it’s much,
much slower, you might reconsider your implementation.

4. 10 points: Use two more images of your own choosing as sample textures and
generate new textures using these samples. Turn in printouts of the original
images and of the textures you generate. Also, include these images in your
electronic submission. For 10 points extra credit, modify your program so
that it will work with color images, and generate color textures.

Appendix: Below is pseudocode provided by Efros and Leung. Please note that when
you code this project in Matlab you won’t want to follow this pseudocode exactly. For
example, some operations that they perform with loops, you will want to perform with
single Matlab routines.

Algorithm details

Let SampleImage contain the image we are sampling from and let Image be the mostly
empty image that we want to fill in (if synthesizing from scratch, it should contain a 3-
by-3 seed in the center randomly taken from SampleImage, for constrained synthesis it
should contain all the known pixels). WindowSize, the size of the neighborhood window,
is the only user-settable parameter. The main portion of the algorithm is presented below.
I have removed the part of the pseudocode that deals with Gaussian filtering, for
simplicity.

function GrowImage(SampleImage,Image,WindowSize)
 while Image not filled do
 progress = 0
 PixelList = GetUnfilledNeighbors(Image)
 foreach Pixel in PixelList do
 Template = GetNeighborhoodWindow(Pixel)
 BestMatches = FindMatches(Template, SampleImage)
 BestMatch = RandomPick(BestMatches)
 Pixel.value = BestMatch.value
 end
 return Image
end

Function GetUnfilledNeighbors() returns a list of all unfilled pixels that have filled
pixels as their neighbors (the image is subtracted from its morphological dilation). The
list is randomly permuted and then sorted by decreasing number of filled neighbor pixels.
GetNeigborhoodWindow() returns a window of size WindowSize around a given pixel.
RandomPick() picks an element randomly from the list. FindMatches() is as follows:
function FindMatches(Template,SampleImage)
 ValidMask = 1s where Template is filled, 0s otherwise
 TotWeight = sum i,j ValidMask(i,j)
 for i,j do
 for ii,jj do
 dist = (Template(ii,jj)-SampleImage(i-ii,j-jj))^2
 SSD(i,j) = SSD(i,j) + dist*ValidMask(ii,jj)*GaussMask(ii,jj)
 end
 SSD(i,j) = SSD(i,j) / TotWeight
 end
 PixelList = all pixels (i,j) where SSD(i,j) <=
min(SSD)*(1+ErrThreshold)
 return PixelList
end

In our implementation the constant were set as follows: ErrThreshold = 0.1. Pixel
values are in the range of 0 to 1.

