
Problem Set 3

CMSC 426

Assigned: Feb. 23, 2010; Due: Mar. 9, 2010

 1BSynopsis

In this project, you will create a tool that allows a user to cut an object out of one image

and paste it into another. The tool helps the user trace the object by automatically

following the boundary of the object of interest. You will then use your tool to create a

composite image.

Forrest Gump shaking hands with J.F.K.

You will be given some Java functions that provide the user interface elements and data

structures that you'll need for this program. These are described below

 2BDescription

This program is based on the paper HTUIntelligent Scissors for Image Composition UTH, by Eric

Mortensen and William Barrett, published in the proceedings of SIGGRAPH 1995. You

will implement a simplified version of the program described in that paper. The way it

will work is that the user first clicks on a "seed point" which can be any pixel in the

image. The user then clicks on a second point in the image. The program then computes

a path from the seed point to the second point that hugs the contours of the image as

closely as possible. This path, called the "live wire", is computed by converting the

image into a graph where the pixels correspond to nodes. Each node is connected by

links to its 8 immediate neighbors. Note that we use the term "link" instead of "edge" of

a graph to avoid confusion with edges in the image. Each link has a cost relating to the

derivative of the image across that link. The path is computed by finding the minimum

cost path in the graph, from the seed point to the mouse position. The path will tend to

follow edges in the image instead of crossing them, since the latter is more expensive.

The path is represented as a sequence of links in the graph. The user continues, clicking

point after point to map out the outline of an object. In the end, the user closes the path

by clicking on a point near the first, seed point, and a connection is found between the

final clicked point and the seed point. The object encircled by this path is then extracted

from the image.

Next, we describe the details of the cost function and the algorithm for computing the

minimum cost path. The cost function we'll use is a bit different than what's described in

the paper, but closely matches what is discussed in lecture.

As described in the lecture notes, the image is represented as a graph. Each pixel (i,j) is

represented as a node in the graph, and is connected to its 8 neighbors in the image by

graph links (labeled from 1 to 8), as shown in the following figure.

 13BCost Function

To simplify the explanation, let's first assume that the image is grayscale instead of color

(each pixel has only a scalar intensity, instead of a RGB triple) as a start. The same

approach is easily generalized to color images.

• Computing cost for grayscale images

Among the 8 links, two are horizontal (links 1 and 5), two are vertical (links 3 and

7), and the rest are diagonal. The magnitude of the intensity derivative across the

diagonal links, e.g. link2, is approximated as:

D(link 2)=|img(i+1,j)-img(i,j-1)|/sqrt(2)

The magnitude of the intensity derivative across the horizontal links, e.g. link 1, is

approximated as:

i+1,j-1

i+1 , j

i+1,j+1 i , j+1 i-1,j+1

i , j i-1 , j

i-1,j-1 i , j-1

1

2 3
4

5

6
7 8

D(link 1)=|(img(i,j-1) + img(i+1,j-1))/2 - (img(i,j+1)

+ img(i+1,j+1))/2|/2

Similarly, the magnitude of the intensity derivative across the vertical links, e.g.

link 3, is approximated as:

D(link 3)=|(img(i-1,j)+img(i-1,j-1))/2-

(img(i+1,j)+img(i+1,j-1))/2|/2.

We compute the cost for each link, cost(link), by the following equation:

cost(link)=(maxD-D(link))*length(link)

where maxD is the maximum magnitude of derivatives across links over in the

image, e.g., maxD = max{D(link) | forall link in the image}, length(link) is the

length of the link. For example, length(link 1) = 1, length(link 2) = sqrt(2) and

length(link 3) = 1.

If a link lies along an edge in an image, we expect that the intensity derivative

across that link is large and accordingly, the cost of link is small.

• Cost for an RGB image

An RGB image is stored in Java as an nxmx3 array. The third dimension

contains the red, blue and green components of the image, respectively. For

example, if I is an RGB image, then I(:,:,1) contains the red in the image. As in

the grayscale case, each pixel has eight links. We first compute the magnitude of

the intensity derivative across a link, in each color channel independently,

denoted as

(DR(link),DG(link),DB(link)).

Then the magnitude of the color derivative across link is defined as

D(link) = sqrt(
(DR(link)*DR(link)+DG(link)*DG(link)+DB(link)*DB(link)

)/3).

Then we compute the cost for link link in the same way as we do for a gray scale

image:

cost(link)=(maxD-D(link))*length(link).

Notice that cost(link 1) for pixel (i,j) is the same as cost(link 5) for pixel (i+1,j).

Similar symmetry property also applies to vertical and diagonal links.

• Using cross correlation to compute link intensity derivatives

 You should compute the D(link) formulas above using 3x3 correlation or

convolution. Each of the eight link directions will require using a different kernel.

You will need to figure out for yourself what the proper entries in each of the eight

kernels will be. You can do this using Java’s ConvolveOp. There is an example in

the code we are giving you showing how to use this to compute a derivative.

 14BComputing the Minimum Cost Path

The pseudo code for the shortest path algorithm in the paper is a variant of Dijkstra's

shortest path algorithm, which is described in any algorithm text book (e.g.,

Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Cliff Stein, published by MIT Press). Here is some pseudo code which is

equivalent to the algorithm in the SIGGRAPH paper, but we feel is easier to understand.

function find_shortest_path
input: array[][][],seed, goal, image_height,image_width

array[][][] stores the eight cost of links for all of the pixels.

Output: A two dimensional array with the first point being goal and the last point

being immediately next to the seed. Keep the array size constant with

Iscissor.SIZE_MAX, put the points on the path at the beginning of the array, and

fill in the rest of the array with -1.

comment: each node will experience three states: INITIAL, ACTIVE,

EXPANDED sequentially. The algorithm terminates when the goal-point has

been extracted from the queue, so that the shortest path to it is known. All nodes

in the graph are initialized as INITIAL. When the algorithm runs, all ACTIVE

nodes are kept in a priority queue, pq, ordered by the current total cost from the

node to the seed.

Begin:
initialize the priority queue pq to be empty;

initialize each node to the INITIAL state;

set the total cost of seed to be zero;

insert seed into pq;

extract the node q with the minimum total cost in pq;

% Now find the shortest path.

while q is not (0,0) & q is not goal

% If q is (0,0), it means the queue is empty.

mark q as EXPANDED;

for each neighbor node r of q

if r has not been EXPANDED

mark r as ACTIVE;

insert r in pq with the sum of the total cost of q and

link cost from q to r as its total cost;

if inserting r changed it

make an entry for r in the Pointers array

indicating that currently the best way to

reach r is from q.

extract the node q with the minimum total cost in pq;

End

% Trace back your solution.

Initialize wire array to be zeros.

Set current pixel to the goal pixel.

Set current pixel in wire to be 1

While current pixel ~= seed pixel

 0BSet current pixel to be predecessor to current pixel retrieved from Pointers

set current pixel in wire to be 1

End

Return wire

We provide the priority queue functions that you will need in the skeleton code

(implemented as an unsorted array). These are: Create, extractmin and insert.

 3BSkeleton Code

You can download the supporting files from the class web page. Here is a description of

what's in there:

• Iscissor.Java : This is the main class and contains the main() method in it. It

contains a number of methods but from them we list a few below.

 UgetDerivativAarray(BufferedImage img,int hgt,int wdth)

This method takes input an image, its height and width and returns a 3-dimensional

double array of size height*width*8. For each of the points in the image array, we have to

store the cost of the eight links connected to it.

 Ulivewire(BufferedImage img,int img_height,int img_width)

This method takes the image, height, width as input and returns a 2-dimensional array. It

calls the Shortest_Path method in it. It returns the boundary points of the selected area.

 Ucopypaste(BufferedImage img,BufferedImage imgc,int img_height,int U

 Uimg_width, int live_wire[][])

This method takes the image, the image where it would copy,height and width of original

image and the 2-dimensional array with all the boundary points of the selectede area. It

basically does the pasting part and this method does not return anything.

• Short_Path_modified.Java : In this class the shortest path algorithm will be

implemented. Start[] and end[] are one dimensional arrays of size two. The first

field holds the X coordinate and the 2P

nd
P field holds the Y coordinate. Arr[][][] is a

3-d array of size height*width*8 and holds the link cost of eight links around the

pixels in the image.

• Linear_path.java : This class has been implemented and it finds a straight linear

path between two points.

• MyImagePanel.java : This class helps in display and resizing of the image and has

been implemented.

• Point.java : This class implements a point object (with cost comparator) and can

be used to implement a priority queue.

• Test_q.java : This class has CREATE(), INSERT() and EXTRACTMIN()

methods, which are to be used to implement the PriorityQueue.

Steps to use this code:

When you will implement the required methods properly, the code should work in the

following way. Please change the name of the directory of testing images based on your

machine in the readimage() method.

1. Run Iscissor.java.

2. Enter the file name from which you want to crop.

3. Enter the file name in which you want to paste.

4. The first file will open and you would select a point (first point) by left clicking

on the window. And you will left click again (second point) and you see the

boundary formed using the shortest path algorithm. If you do not like that

boundary right click on the image and again left click where you want to place the

second point.

5. You would continue doing this and keep the last point of your selection very close

to the beginning point. Then left click anywhere in the image and the image

where you want to paste will open. You can select maximum 20 points to

determine a boundary.

6. Left click anywhere to place that (Be careful such that the cropped portion fits in

there). If you want change the position of pasting do that by left clicking on

different parts of the new image window. Finally right click anywhere to

complete your job.

7. Save this new image and also the old image with the selected part.

Some guidelines on how to use this Code:

• When you place the cropped portion in the new image be careful so that the part

fits in within that image. The cropped image would be placed in the new image

around the point where you left click.

• Don’t crop a very large image. Keep it small. There should not be any problem as

long as you crop images of size around 400*400.

• Try to avoid copying rectangular/square structures. Basically if there are a very

large number of horizontal points on the cropping boundary for a fixed vertical

point, the code may not work well. We recommend using any irregular shapes for

cropping.

• Do not take images very large. Please keep them less than 1000*1000 pixels.

• Please do not lose track of the first point. Keeping the last point very close to the

first point is the only way to complete selecting an area.

• Finally, the portions you copy might be a little bit crazy in the new image if the

cropped portion is not a convex polygon. Don’t worry about that.

What the Shortest path algorithm is supposed to

return:

 4BRun-time notes: Our program does not show the path as you move the mouse, but

requires you to click on the next point, and then computes the appropriate path. In

good circumstances, it will take a few seconds to compute the next stage in your

path. However, run-time can vary. Two things can make the program very slow.

First, if the image contains a lot of texture and strong gradients, many paths will

have a low cost. Exploring all these possible paths will be much slower than when

a single strong gradient produces one low-cost path. Second, if you click on two

points that are very far apart, finding the best path between them may be quite

slow.

 5BTo Do

 6BImplement find_shortest_path method

 7BImplement getDerivativAarray method

 8BUse these to create a new, composite image.

 9BThe Artifact

For this assignment, you will turn in a final image (the artifact) which is a composite

created using your program. Your composite can be derived from as many different

images as you'd like. Make it interesting in some way--be it humorous, thought

provoking, or artistic! You should use your own scissoring tool to cut the objects out.

 10BHand in:

 11BYou should hand in all code that you have written or modified. Also hand in your

composite image and the raw images that you used to generate it, along with a brief

description of how you did it. Check out some of the projects done by Steve

Seitz’s class (there is a link to it on the class web page) for inspiration and an idea

of useful descriptions of what was done. Email the TA a single tar’ed file with all

this information too, including the images you created and used to create them.

 12BChallenge Problems

Here is a list of suggestions for extending the program for extra credit. If you choose to

implement one of these, turn in the code you wrote along with a description of what you

did. You are encouraged to come up with your own extensions. We're always interested

in seeing new, unanticipated ways to use this program!

Modify the interface and program to allow blurring the image by different amounts

before computing link costs. Describe your observations on how this changes the results.

Try different costs functions, for example the method described in HTUIntelligent Scissors

for Image CompositionUTH, and modify the user interface to allow the user to select different

functions. Describe your observations on how this changes the results.

Implement code to allow each point clicked on to snap to the nearby point with the

highest magnitude of gradient, as described in HTUIntelligent Scissors for Image

CompositionUTH.

Feel free to come up with your own improvements to the program. Describe anything

you do in detail.

Credits

This basic problem set was created by Steve Seitz for his computer vision class at the

University of Washington (based of course on the Intelligent Scissors paper). All

concepts, and the write-up of this problem set, are heavily adapted from his problem set.

Konstantinos Bitsakos ported this problem set to Matlab. Arijit Biswas has ported it to

Java.

