Problem Set 4

CMSC 426

Assigned: Feb. 19, 2004 Due: Mar. 4, 2004

Synopsis

In this project, you will create a tool that allows a user to cut an object out of one image and paste it into another. The tool helps the user trace the object by automatically following the boundary of the object of interest. You will then use your tool to create a composite image.

You will be given some Matlab functions that provide the user interface elements and data structures that you'll need for this program. These are described below

Description

This program is based on the paper Intelligent Scissors for Image Composition, by Eric Mortensen and William Barrett, published in the proceedings of SIGGRAPH 1995. You will implement a simplified version of the program described in that paper. The way it will work is that the user first clicks on a "seed point" which can be any pixel in the image. The user then clicks on a second point in the image. The program then computes a path from the seed point to the second point that hugs the contours of the image as closely as possible. This path, called the "live wire", is computed by converting the image into a graph where the pixels correspond to nodes. Each node is connected by links to its 8 immediate neighbors. Note that we use the term "link" instead of "edge" of a graph to avoid confusion with edges in the image. Each link has a cost relating to the derivative of the image across that link. The path is computed by finding the minimum cost path in the graph, from the seed point to the mouse position. The path will tend to follow edges in the image instead of crossing them, since the latter is more expensive. The path is represented as a sequence of links in the graph. The user continues, clicking point after point to map out the outline of an object. In the end, the user closes the path, and a connection is found between the final clicked point and the seed point. The object encircled by this path is then extracted from the image.

Next, we describe the details of the cost function and the algorithm for computing the minimum cost path. The cost function we'll use is a bit different than what's described in the paper, but closely matches what was discussed in lecture.

As described in the lecture notes, the image is represented as a graph. Each pixel (i,j) is represented as a node in the graph, and is connected to its
8 neighbors in the image by graph links (labeled from 1 to 8), as shown in the following figure.

Cost Function

To simplify the explanation, let's first assume that the image is grayscale instead of color (each pixel has only a scalar intensity, instead of a RGB triple) as a start. The same approach is easily generalized to color images.

· Computing cost for grayscale images

Among the 8 links, two are horizontal (links 1 and 5), two are vertical (links 3 and 7), and the rest are diagonal. The magnitude of the intensity derivative across the diagonal links, e.g. link2, is approximated as:

D(link 2)=|img(i+1,j)-img(i,j-1)|/sqrt(2)

The magnitude of the intensity derivative across the horizontal links, e.g. link 1, is approximated as:

D(link 1)=|(img(i,j-1) + img(i+1,j-1))/2 - (img(i,j+1) + img(i+1,j+1))/2|/2

Similarly, the magnitude of the intensity derivative across the vertical links, e.g. link 3, is approximated as:

D(link 3)=|(img(i-1,j)+img(i-1,j-1))/2-(img(i+1,j)+img(i+1,j-1))/2|/2.
We compute the cost for each link, cost(link), by the following equation:

cost(link)=(maxD-D(link))*length(link)

where maxD is the maximum magnitude of derivatives across links over in the image, e.g., maxD = max{D(link) | forall link in the image}, length(link) is the length of the link. For example, length(link 1) = 1, length(link 2) = sqrt(2) and length(link 3) = 1.
If a link lies along an edge in an image, we expect that the intensity derivative across that link is large and accordingly, the cost of link is small.

· Cost for an RGB image

An RGB image is stored in matlab as an nxmx3 array. The third dimension contains the red, blue and green components of the image, respectively. For example, if I is an RGB image, then I(:,:,1) contains the red in the image. As in the grayscale case, each pixel has eight links. We first compute the magnitude of the intensity derivative across a link, in each color channel independently, denoted as

(DR(link),DG(link),DB(link)).

Then the magnitude of the color derivative across link is defined as

D(link) = sqrt((DR(link)*DR(link)+DG(link)*DG(link)+DB(link)*DB(link))/3).

Then we compute the cost for link link in the same way as we do for a gray scale image:

cost(link)=(maxD-D(link))*length(link).

Notice that cost(link 1) for pixel (i,j) is the same as cost(link 5) for pixel (i+1,j). Similar symmetry property also applies to vertical and diagonal links.

· Using cross correlation to compute link intensity derivatives

 You should compute the D(link) formulas above using 3x3 correlation. (Correlation means convolution with no flipping! Create 3x3 filters that do not need to be flipped, and use the Matlab function imfilter to perform correlation). Each of the eight link directions will require using a different correlation kernel. You will need to figure out for yourself what the proper entries in each of the eight kernels will be.

Computing the Minimum Cost Path

The pseudo code for the shortest path algorithm in the paper is a variant of Dijkstra's shortest path algorithm, which is described in any algorithm text book (e.g.,
Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein, published by MIT Press). Here is some pseudo code which is equivalent to the algorithm in the SIGGRAPH paper, but we feel is easier to understand.

function scissors.m

input: seed, goal, image

output: a binary array that is the same size as the image. The array is marked 1 when a pixel is on the optimal path from the seed to the goal, and 0 otherwise.

comment: each node will experience three states: INITIAL, ACTIVE, EXPANDED sequentially. The algorithm terminates when the goal-point has been extracted from the queue, so that the shortest path to it is known. All nodes in the graph are initialized as INITIAL. When the algorithm runs, all ACTIVE nodes are kept in a priority queue, pq, ordered by the current total cost from the node to the seed.

Begin:

initialize the priority queue pq to be empty;

initialize each node to the INITIAL state;

set the total cost of seed to be zero;

insert seed into pq;

extract the node q with the minimum total cost in pq;

% Now find the shortest path.

while q is not (0,0) & q is not goal

% If q is (0,0), it means the queue is empty.
mark q as EXPANDED;

for each neighbor node r of q

if r has not been EXPANDED

mark r as ACTIVE;

insert r in pq with the sum of the total cost of q and link cost from q to r as its total cost;

if inserting r changed it

make an entry for r in the Pointers array indicating that currently the best way to reach r is from q.

extract the node q with the minimum total cost in pq;

End

% Trace back your solution.

Initialize wire array to be zeros.

Set current pixel to the goal pixel.

Set current pixel in wire to be 1

While current pixel ~= seed pixel

Set current pixel to be predecessor to current pixel retrieved from Pointers

set current pixel in wire to be 1

End

Return wire

We provide the priority queue functions that you will need in the skeleton code (implemented as an unsorted array). These are: extractmin and insert. We provide a single function insert, that performs both the insertion and update function. This function is called with a node, r, and it inserts r into the priority queue if it is not there, and updates its value if it is there. insert returns a value to indicate whether r already was in the queue with a lower value.

Skeleton Code

You can download the supporting files from the class web page. Here is a description of what's in there:

· ps4.m. Call this function to start the scissors. This function contains all the setup and user interface code. You will not need to alter this.

· scissors.m. This is the central function that computes the shortest path between two points in the image. You will need to modify this program to compute the cost associated with each link, and to include the shortest path algorithm.

· insert.m This function will insert a node into the priority queue. It is called with the x and y coordinates of the node, and its value. It returns a binary value to indicate whether the node was inserted into the queue or had its value updated (1), or whether it was already there with a smaller value, so that no update was needed. You will not need to alter this.
· extractmin.m. This removes the lowest cost node from the priority queue and returns its coordinates and value. You will not need to alter this.
· filterimage.m This function will smooth the image, prior to computing the link costs. You will need to implement this.

· imagetoolbox.m. This function will help you composite the subimage you cut out with a new image. Call this with the new image, the image you used to cut out a figure, and the mask returned by ps4. It provides a simple interface that allows you to click on the new image to indicate where to place the subimage that you cut out. You might want to alter this to do error checking or to allow you to scale or rotate an image.
User Interface

ps4 will pop up a window containing the image you call it with. After you click on a seed point, it will also pop up a menu, allowing you to insert another point, delete the last point you added, look at the currently computed path, or exit. In addition, it will allow you to close off the current path by using the initial seed point as the final point in the path.

Notice that the Matlab window containing the image you are working on has a little magnifying glass icon. You can use this to magnify the part of the image you are working on, for better control.

Run-time notes: Matlab is not quite fast enough for the kind of real-time interaction described in the intelligent scissors program. Our program does not show the path as you move the mouse, but requires you to click on the next point, and then computes the appropriate path. In good circumstances, it will take a few seconds to compute the next stage in your path. However, run-time can vary. Two things can make the program very slow. First, if the image contains a lot of texture and strong gradients, many paths will have a low cost. Exploring all these possible paths will be much slower than when a single strong gradient produces one low-cost path. Second, if you click on two points that are very far apart, finding the best path between them may be quite slow.

To Do
Implement scissors.m

Implement filterimage.m

Use these to create a new, composite image.
The Artifact

For this assignment, you will turn in a final image (the artifact) which is a composite created using your program. Your composite can be derived from as many different images as you'd like. Make it interesting in some way--be it humorous, thought provoking, or artistic! You should use your own scissoring tool to cut the objects out. After that, you can use imagetoolbox.m to combine two images, or combine images with basic matlab routines. You may find it useful to use matlab functions like imresize, or imrotate to alter the image you have cut out before inserting it. This may require a little ingenuity if you wish to alter an image while preserving a format that can be inputted into imagetoolbox. You are also free to use Photoshop or any other image editing program to process the resulting images and combine them into your composite

Hand in:

You should hand in a hardcopy of all code that you have written or modified. Also hand in printouts of your composite image and the raw images that you used to generate it, along with a brief description of how you did it. Check out some of the projects done by Steve Seitz’s class (there is a link to it on the class web page) for inspiration and an idea of useful descriptions of what was done. Email the TA a single tar’ed file with all this information too, including the images you created and used to create them.

Challenge Problems

Here is a list of suggestions for extending the program for extra credit. If you choose to implement one of these, turn in the code you wrote along with a description of what you did. You are encouraged to come up with your own extensions. We're always interested in seeing new, unanticipated ways to use this program!

Modify the interface and program to allow blurring the image by different amounts before computing link costs. Describe your observations on how this changes the results.

Try different costs functions, for example the method described in Intelligent Scissors for Image Composition, and modify the user interface to allow the user to select different functions. Describe your observations on how this changes the results.

Implement code to allow each point clicked on to snap to the nearby point with the highest magnitude of gradient, as described in Intelligent Scissors for Image Composition.

Find a way to substantially speed up the run time of the algorithm. This might be done with a better implementation of the priority queue. Beware, however, this is not as easy as it might seem, since Matlab is surprisingly slow at certain non-matrix operations. If you want to try this, you might find the profile function useful.

Credits

This basic problem set was created by Steve Seitz for his computer vision class at the University of Washington (based of course on the Intelligent Scissors paper). All concepts, and the write-up of this problem set, are heavily adapted from his problem set. Konstantinos ported this problem set to Matlab. Many thanks to both.

i , j-1

i-1,j-1

i+1,j-1

i-1 , j

i , j

i-1,j+1

i , j+1

i+1,j+1

i+1 , j

8

7

6

3

2

1

4

5

