
Problem Set 5 
CMSC 426 

Assigned Wednesday, March 11, Due Wednesday, March 25 
 
Texture Synthesis 
 
(Note that this problem set is worth 75 points.  I shortened it a little, due to the break) 
 
The goal of this problem is to implement the texture synthesis method of Efros and 
Leung.  This is described in the paper: ``Texture Synthesis by Non-parametric 
Sampling’’, by Efros and Leung, in the International Conference on Computer Vision, 
1999.  There is a link to their web site on the class web site, which includes links to their 
paper and pseudocode for their algorithm.  In this assignment, I have simplified their 
algorithm a little bit, to remove some details such as Gaussian weighting, which don’t 
seem to be necessary to achieve good performance. 
 
This algorithm takes a sample of some texture and generates a new image containing a 
similar texture.  The strategy of the algorithm is to generate each new pixel in the image 
using a neighborhood of already generated pixels.  One looks in the sample for similar 
neighborhoods, selects one of these similar neighborhoods at random, and copies the 
corresponding pixel into the new image.  You are only required to implement this 
program for black and white images.   
 

1. SSD  20 points:  S will contain a sample of the texture we want to generate.  
T contains a small (2n+1)x(2n+1) neighborhood of pixels.  Not all the pixels 
in this neighborhood have been filled in with valid values however.   So M 
(the mask) is a (2n+1)x(2n+1) matrix that contains a 1 for each position in 
which T contains a valid pixel, and a 0 whenever the corresponding pixel in T 
should be ignored.  Computing the SSD is like correlation in that we shift the 
template over every position in the sample, and compute a separate result for 
each position.  Thus, the output D is the same size as S.  To compute D(i,j) we 
shift T so that its center is right on top of S(i,j).  Then we take the difference 
between each valid pixel in T and the corresponding pixel in S, square the 
result, and then add all these together.  

 
To begin, you should write a function called SSD which performs the central 
step of the algorithm.  This will compute the sum of squared difference 
between a little portion of the new image you are making and every portion of 
the sample.  It should have the form:  

 
While you can compute SSD directly, it is interesting to note that it is closely 
related to correlation.  To make this connection, we will ignore the mask for 
the moment.  SSD is given by the expression: 
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       To see how this is related to correlation, let’s open up the expression: 
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The bottom line shows that to compute SSD we can combine 3 separate 
summations.  You should notice that the middle term is just -2 times the result 
of correlating the template, T, with the sample image, S.  This gives us a sense 
of the relationship between SSD and correlation; in general, the higher the 
correlation between the template and the sample at some location, the lower 
the SSD will be.  This is why correlation alone is sometimes used as a way of 
finding locations where the template and sample are similar. 

 
 

Things get just a little more complicated when we have a mask.  We can write 
this as: 
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In this case, for every summation, we only want to use the pixels in the 
template that are part of the mask.  
 
Test your function using the binary checkerboard image: 
 
111000111 
111000111 
111000111 
000111000 
000111000 
000111000 
111000111 
111000111 
111000111 
 
The template:  
 
100 
011 
011 
 
 



 
And the mask: 
 
111 
110 
110 
 
The output of your routine should be a 9x9 array of distances.  If we call this 
D, then, for example, D(4,4) should be 0, while D(5,5) should be 4. 

 
Turn in a (virtual) printout of the results, along with your code.   

 
You may be worried about how to compute SSD when the template goes 
outside the boundary.  Don’t worry about this.  You can do anything that 
produces reasonable results.  For example, you can just treats pixels outside S 
as if they were 0.  This will work fine, since these areas then will generally not 
match your template very well.  

 
2. 15 points: Using SSD and the pseudocode below, implement the function 

FindMatches.  This should find all candidate pixels in the sample that have a 
neighborhood that is sufficiently similar to the template.   

 
You might want to write FindMatches so that it takes three inputs: the sample 
image, the template, and the mask.  Test your program on the same example 
that you used in problem 1.  If you test it using the error threshold listed below, 
you will get two possible matches, at D(4,4) and D(7,7). Hand in printouts of 
the results, and of your program. 

 
3. 25 points: Now complete your program.  I am including below the pseudocode 

given by Efros and Leung.  Test your program using a checkerboard pattern, 
and using the bricks image in brickbw.jpg.  Hand in printouts of the results. 

 
 

4. 10 points:  Use two more images of your own choosing as sample textures and 
generate new textures using these samples.  Turn in printouts of the original 
images and of the textures you generate.  Also, include these images in your 
electronic submission.  For 10 points extra credit, modify your program so 
that it will work with color images, and generate color textures. 

 
 
 
Appendix: Below is pseudocode provided by Efros and Leung.   

Algorithm details 



Let SampleImage contain the image we are sampling from and let Image be the mostly 
empty image that we want to fill in (if synthesizing from scratch, it should contain a 3-
by-3 seed in the center randomly taken from SampleImage, for constrained synthesis it 
should contain all the known pixels). WindowSize, the size of the neighborhood window, 
is the only user-settable parameter. The main portion of the algorithm is presented below.  
I have removed the part of the pseudocode that deals with Gaussian filtering, for 
simplicity.  

 
function GrowImage(SampleImage,Image,WindowSize) 
  while Image not filled do 
    progress = 0 
    PixelList = GetUnfilledNeighbors(Image) 
    foreach Pixel in PixelList do 
      Template = GetNeighborhoodWindow(Pixel) 
      BestMatches = FindMatches(Template, SampleImage) 
      BestMatch = RandomPick(BestMatches) 
      Pixel.value = BestMatch.value 
  end 
  return Image 
end 

Function GetUnfilledNeighbors() returns a list of all unfilled pixels that have filled 
pixels as their neighbors (the image is subtracted from its morphological dilation). The 
list is randomly permuted and then sorted by decreasing number of filled neighbor pixels. 
GetNeigborhoodWindow() returns a window of size WindowSize around a given pixel. 
RandomPick() picks an element randomly from the list. FindMatches() is as follows:  
function FindMatches(Template,SampleImage) 
  ValidMask = 1s where Template is filled, 0s otherwise 
  TotWeight = sum i,j ValidMask(i,j) 
  for i,j do 
    for ii,jj do 
      dist = (Template(ii,jj)-SampleImage(i-ii,j-jj))^2 
      SSD(i,j) = SSD(i,j) + dist*ValidMask(ii,jj) 
    end 
    SSD(i,j) = SSD(i,j) / TotWeight 
  end 
  PixelList = all pixels (i,j) where SSD(i,j) <= 
min(SSD)*(1+ErrThreshold) 
  return PixelList 
end 
In our implementation the constant were set as follows: ErrThreshold = 0.1. Pixel 
values are in the range of 0 to 1.  

 
 


