
CMSC 426
Problem Set 6

Assigned, Wednesday, March 26, 2014
Due, Wednesday, April 9, 2014

Pencil and Paper Exercises

1. Segmentation with Graph Cut (25 points)
Suppose you are using graph cuts to interactively segment an image discussed in
class and in the paper by Boykov and Jolly linked to on the class web page.
Given an image and user provided information, you must construct a graph so that
the mincut of the graph corresponds to a segmentation of the image.

Suppose the image is:

0 10 40
10 30 50

and the user has indicated that the pixel with intensity of 0 is background, and the
pixel with intensity of 50 is foreground.

We will be creating a graph in which every pixel corresponds to a node, and there
is an edge between two pixels’ nodes if they are 4-connected neighbors (that is, if
they are neighbors horizontally or vertically; diagonal neighbors do not count).
For example, I(x,y) and I(x+1,y) are neighbors, while I(x,y) and I(x+1,y+1) are
not neighbors. I’ll call these neighboring nodes A and B, and refer to their
intensities as I(A) and I(B).

The graph will have two kinds of costs. First, if A and B are neighbors, we will
define the edge weight between them as:

    
2

2

2

BIAI

e)B,A(w 





  is a parameter, use a value of 20 for it. Notice that I(A)-I(B) is essentially the
image derivative as we go from pixel A to B (in this example, in the x direction).

Second, since we know that one foreground pixel has intensity of 50, and one
background pixel has an intensity of 0, we can estimate that the foreground is
generally lighter than the background. For each pixel we use a weight based on
the probability that a pixel with that intensity would be produced by the
Foreground or Background. Specifically, we use:  log Pr I(A) | Foreground  
and  log Pr I(A) | Background   . Here is another parameter. You can just

ignore it, assuming it to be 1. Let’s suppose we have:

  05.Foreground|10)A(IPr  ,   2.Foreground|30)A(IPr  ,

  3.Foreground|40)A(IPr  .
and

  3.Background|10)A(IPr  ,   1.Background|30)A(IPr  ,

  05.Background|40)A(IPr  .

Draw a graph that the graph cut segmentation algorithm would produce in order
to segment this image, using the costs described above. What would be the result
of running mincut on this graph? What would be the image segmentation that
would be produced?

Mosaics

The goal of this problem set is to write code to form a mosaic of two images. We begin
with two images that have overlapping fields of view (see below) and stitch them
together into a single, larger image. Our strategy is to use SIFT to locate feature points
and their descriptors. Each feature in one image is matched to a feature in the second
image with the most similar descriptor. Note that many, but not all of these matches will
be correct. To find a good set of matches we use RANSAC. We randomly pick three
matches, compute the affine transformation that relates these matches, and then apply
these to all the feature points. We repeat many times and pick the transformation that
maps the most feature points in one image near their matching feature point in the other
image. Finally, we use this transformation to combine the images.

We will give you code that computes SIFT features and descriptors for a single image.
(Actually, we give you instructions on retrieving this code). This code includes a Matlab
wrapper you can use to call SIFT. We also give you two test images, LR1 and LR2
(above), to use in testing your code.

DOWNLOAD SIFT CODE:

The code for finding SIFT features is due to Andrea Vedaldi. Go to www.vlfeat.org and
download the latest version of vlfeat code (0.9.18). Download the binary package. Then
follow the instructions under Matlab install on the menu on the left. Note that there is a
lot of documentation for everything, including all functions in VLfeat. You should just
need to execute the command:

run('VLFEATROOT/toolbox/vl_setup')

Note that this code contains a mix of Matlab and C++, so you may need to install a C++
compiler. This can be found at:
http://www.mathworks.com/support/compilers/R2012a/win64.html
Following this link, you should be able to find the supported compilers for windows,
linux, and mac.

We include some skeleton code and a helper function, in the file ps6.m.

Problems:

1. 10 points: Run the skeleton code to detect SIFT features in a white square on a
black background, and in the two images above. The results should look like this:

Essentially all the code you need to do this is given to you. The point of this
problem is just to get you started running SIFT. Include the resulting images in
your write-up.

2. 10 Points: Find Best Match. vl_sift returns two values, F and D. Each column
of F contains the x and y coordinates, orientation and scale of each feature. Each
corresponding column of D contains a descriptor for that feature. Write code that
takes every SIFT feature in image 2 and finds the feature in image 1 with the most
similar descriptor. You should compare two SIFT descriptors (which are
histograms) using SSD. That is, just compute the SSD of the appropriate columns
of the D that is computed for each image. If there are n features in image 2, the
output of this might be an nx5 array, in which each row contains the (x,y)
coordinates of a point in image 2, the point in image 1 that matches it best, and
the score of this match.

Now, using this code, write a function, find_best_match, which finds the three
matches that have the lowest SSD. Display both images with these points shown
in three different colors. That is, the images might each have a red disk,
indicating the location of the two points that match best, a green disk, showing the
points that match second best, and a blue disk, showing the points that match 3rd
best. Run this on LR1 and LR2. Include the resulting images in your write-up.
The results should look like this (it’s a little hard to see the blue dot without
enlarging the image):

3. 10 points: Affine Transform. Write a function that takes three matching points
as input, and computes an affine transformation that maps three points from one
image to the matching three points in the second image. So executing:

 A = affine_transformation(p1,p2);

computes a 2x3 affine transformation, A, that maps the points in p2, represented
as a 2x3 matrix in which each column is a point, so that they match the points in
p1. Test this by running the code in ps6. You might get results like:

>> ps6(3)

ans =

 1.0e-15 *

 0.3331 0.2220 0.1110
 -0.0555 -0.2220 -0.4441

4. 30 Points: RANSAC. Now, perform RANSAC to find the best affine

transformation that maps the most points from image 2 to image 1. To do this,
perform the following steps:

a. Randomly pick three matching points, in the format computed in part 2.
b. Compute the affine transformation, A, that relates them, using part 3.
c. Apply A to all points in image 2.
d. For each point, p, in image 2, that has been matched to point q in image 1,

find out whether Ap is close to q (“close” might mean their Euclidean
distance is less than 2).

e. Count the number of points that are mapped by A to be close to their
matching point.

f. Repeat steps a-e many times (maybe a thousand?) and choose the A with
the highest total.

Test your code using part 4 of ps6. In this code, I construct a test case with
random points in p1 and p2, some of which are related by an affine
transformation. For example, you might get:

A =

 70.1550 77.2314 14.4582
 36.9972 9.5638 9.4105

Ares =

 70.1550 77.2314 14.4582
 36.9972 9.5638 9.4105

5. 20 Points: Stitching. Now write a function, stitch(J, K, A), that will stitch

two images, J and K, together, using the affine transformation A. For this
problem, just do this in a very simple way. For example, for every pixel in image
2, apply A to find its transformed location. Round off this location to an integer
value. Place this value in the new image at this location. At the same time, place
all values from image 1 into the new image at their original location. If a pixel
doesn’t get a value from image 1 or image 2, make it black. If a pixel gets two or
more values, you can combine them in any way you want. That is, if image 1 and
image 2 overlap, you might use the average, or always use image 1’s value, or
always use image 2’s value. Doing this may produce some artifacts, since there
may be pixels in the middle of the new, target image, that don’t get any value
assigned from either of the original images. You can fix this for extra credit as
part of the challenge problem. Test your code on LR1 and LR2 using two affine

transformations. First, create an affine transformation that will translate LR2 100
pixels in the x direction, to the right of LR1. Next, create an affine transformation
that will rotate LR2 by pi/16, scale it by .8, and translate it 100 in the x direction
and 50 in the y direction. The results of my program are shown below:

Hint: Suppose I and J are the first and second image, and A is the affine
transformation. For a point, (x,y), let (x’,y’) = round(A(x,y)). Then we could just
set I(x’,y’) = J(x,y). One of the things that might make this tricky is that x’ or y’
might be less than 1. However, the examples in this project are constructed so
that you won’t have to worry about that. This is something you might want to
handle as part of the challenge problem.

Note: Combining two images can be done much more efficiently using the Matlab
function imtransform. I’m not recommending that, because I think it will be
trickier, though. However, you are free to use imtransform if you want.

6. 10 points Now write a mosaic program that puts this all together. It runs SIFT on

each image, finds the best matching points, runs RANSAC to compute an affine
transformation, and uses this transformation to stitch the images together. The
results of my program are shown below.

7. 10 points: Now, take your own photos and run your program on them. Notice
that the affine transformation you computed in part 4 is almost a pure translation.
This is because I moved the camera very little between pictures. If you move the
camera too much, even an affine transformation won’t work well. See if you can
take two pictures that are well aligned by a more complicated affine
transformation. Show the pictures you started with, the result, and the affine
transformation that was computed.

8. Up to 20 Points: Challenge problem. Enhance this in a significant way.

Suggestions:

a. Improve your program so that you can provide it with many images, and it
will stitch them all together.

b. Improve the program so that you use bilinear interpolation to fill up all the
pixels in the image. Show an example where this improves the results.
For example, if the second image is smaller than the first image, this will
be necessary.

c. Often, due to automatic gain control or other factors, the overall lightness
of the images will be different. This looks bad when they are stitched
together. Even in the result in Part 5 this is a factor. You can see a slight
line where the images overlap, because the left image is a little lighter.
Find a way to normalize the images to remove this effect.

d. If you know about projective transformations, enhance the program so that
it uses a full homography to align the images.

e. Make up your own improvement. You can check the paper by Brown and
Lowe (http://cvlab.epfl.ch/~brown/papers/ijcv2007.pdf) for ideas.

