
Problem Set 7 
CMSC 426 

Assigned Tuesday April 27, Due Tuesday, May 11 
 

1. Stereo Correspondence.  For this problem set you will solve the stereo 
correspondence problem using dynamic programming, as described in class.  The 
goal of this algorithm is to find the lowest cost matching between the left and 
right images, so that the matching obeys the epipolar, ordering, non-negative 
disparity and uniqueness constraints.  First, let’s define these: 

a. The epipolar constraint tells us that we can match the images one row at a 
time.  So we have to solve a matching problem with 1D images, matching 
pixels in a row in the left image to pixels in the same row of the right 
image.  Then we combine the results for every row.  Note that we will use 
images in which the epipolar lines are horizontal. 

b. The ordering constraint means that if pixel i in the left image matches 
pixel j in the right image, then no pixel to the right of pixel i is allowed to 
match a pixel to the left of pixel j.   

c. The uniqueness constraint means that every pixel can match at most one 
pixel.  However, a pixel might be occluded, and match nothing. 

d. Non-negative disparity means that no point should have negative disparity, 
because all points are in front of the camera, and have positive depth. 

e. Subject to these constraints we use a cost function to measure how good a 
match is.  If we match pixel i in image L to pixel j in image R, the cost of 
this match will be (L(i)-R(j))2.  If any pixel is not matched, the cost of this 
is OC, which is some constant occlusion cost.  For the experiments below, 
I assume that you first normalize all images so that intensities range 
between 0 and 1.  Then an occlusion cost of OC = .01 should work well.   
This is about the same as the cost of matching two pixels with an intensity 
that differs by .1, or 25 in the original image.  However, feel free to 
experiment with other values to try to improve the results. 

 
These constraints allow us to find the best matching between two epipolar lines using 
dynamic programming.  One way to see this is to think about constructing a cost table, C.  
C(i,j) contains the cost of the best possible set of correspondences and occlusions that 
accounts for the first i pixels in the left image and the first j pixels in the right image.  We 
will build this table recursively, so that C(i,j) is computed using only values of C(i’,j’) for 
i’<=i, j’<=j. 
 
We initialize C(0,0) = 0.  This means that if we haven’t accounted for any pixels, there is 
zero cost.  Next, let’s consider C(1,0).  This means that a set of matchings account for the 
first pixel in the left image, and no pixels in the right image.  This can only happen if the 
first pixel in the left image is occluded, so that C(1,0) = OC.  Similarly, for any i, C(i,0) = 
i*OC, and C(0,j) = j*OC. 
 



Next, with this initialization, we can think about how to fill in an arbitrary point in the 
table, C(i,j).  There are three ways we can get to this point in one step.  One is that we 
might have matched pixel i in the left image to pixel j in the right image.  In that case, the 
cost is the cost of matching pixels i and j, plus the cost of the best way of matching all 
pixels in the left image up to i-1 and all pixels in the right image up to j-1.  So, if we say 
that L(i) is pixel i in the left image, and R(j) is pixel j in the right image, then one 
possibility is: C(i,j) = (L(i)-R(j))2 + C(i-1,j-1).  But it is also possible that the last step 
before we account for pixels up to i and j is that we occluded a pixel in the left or right 
image.  So we have: 
C(i,j) = MIN((L(i)-R(j))2 + C(i-1,j-1), OC + C(i,j-1), OC + C(i-1, j)). 
 
Using this recursion, we can fill an entire table of costs.  If the left image has n pixels and 
the right image has m pixels, we keep doing this until we have found the value of C(n,m).  
That gives us the cost of the best possible way of matching the two images. 
 
To find the actual disparities, though, we need to not only compute the lowest cost, but 
also keep track of how we got there.  To do this, we can keep another table, M, which 
records which move we took to obtain the minimum cost matching.  So, M(i,j) will tell us 
how we accounted for pixels in the last move that brought us to account for pixels up to i 
in the left image and j in the right.  For example, we might use M(i,j) = 1 to indicate that 
pixel i matched pixel j, while M(i,j) = 2 might indicate that pixel i was occluded.  Using 
M, we can then trace back to find all correspondences and disparities.  So, if M(n,m) = 1, 
that means pixel n in the left image is matched to pixel m in the right image, with a 
disparity of n-m.  It also means that we should look at M(i-1,j-1) to find the next match.  
But if M(n,m) = 2, this means that pixel n was occluded in the left image, and we should 
look next at M(n-1,m).  
 

a. Paper and pencil exercise: Using the cost function above, compute all 
minimum cost matches that obey all the constraints listed above for the 1D 
images, v1 = [1 0 1 1]; v2 = [1 1 0 1].  Write your answers as a disparity map 
for v1.  Since disparity is always non-negative, we can use -1 to indicate an 
occlusion.  That is, a map of [0 -1 1 1] means the disparity for the first point in 
v1 is 0 (v1(1) = 1 matches v2(1) = 1, the second point is occluded and 
unmatched, the third point has a disparity of 1, (v1(3) =1 matches v2(2) = 1), 
and the fourth point has a disparity of 1 (v1(4) =1 matches v2(3) = 0).  Of 
course, this example is not necessarily a minimum cost matching.   

a. 5 points There may be one or more matches with the same minimum 
cost.  List all of them, along with their cost. 

b. 5 points List all minimum cost matches if we are allowed to ignore the 
non-negative disparity constraint. 

c. 5 points List all minimum cost matches if we ignore the ordering 
constraint and the non-negative disparity constraint. 

b. Using disparity.  Suppose that we have two stereo cameras that have a 
baseline of 10 cm.  These cameras have focal points on the x axis.  Suppose 
further that each pixel is 1mm in length.   



a. 5 points: Suppose the cameras each have a focal length of 5mm, and 
are orthogonal to the z direction.  If we match two points with a 
disparity of 10 pixels, what is their depth (that is, their distance in the 
Z direction). 

b. 5 points: Suppose the left camera has a focal length of 5mm, but the 
right camera has a focal length of 10mm.  We still match two points 
with a disparity of 10 pixels.  Do you have enough information to 
determine the depth of this point?  If yes, what is the depth?  If no, 
give an example of two possible matches with the same disparity and 
different depths. 

 
c. 30 points Now, write a function stereo1D.  This function will take as input 

two 1D images, along with an occlusion cost, OC.  For our experiments, OC 
will be .01.  The function will compute the C matrix described above, 
containing the cost of best matches.  If you call this function with: 

 
Left image: 0    0  255    0    0  255 
Right image: 0  255    0    0  255    0 
 
the cost matrix should look like this: 
cost = 0.0 0.01  0.02 0.03 0.04 0.05 
cost = 0.01 0.0  0.01 0.02 0.03 0.04 
cost = 0.02 0.01  0.02 0.01 0.02 0.03 
cost = 0.03 0.02  0.01 0.02 0.03 0.02 
cost = 0.04 0.03  0.02 0.01 0.02 0.03 
cost = 0.05 0.04  0.03 0.02 0.01 0.02 
cost = 0.06 0.05  0.04 0.03 0.02 0.01 
(keep in mind that we normalize intensities to be in the range (0,1)).  Turn in your code 
and a print out showing the result. 
 

d. 30 points: Enhance this function so that it will also keep track of which 
matches or occlusions occurred to produce a matching, with an M matrix, and 
returns the disparities of the best match.  The disparities for the example in (c) 
should look like: [0 -1 1 1 1 1], where -1 indicates an occlusion. Turn in your 
code and a print out showing the result. 

 
e. 20 points: Now expand your program so that you read in left and right images 

from a file and compute a 2D disparity map for the entire images.  This is 
done by just running the 1D stereo code on each pair of conjugate epipolar 
lines (ie, each pair of rows with the same row number) and collecting the 
results together.  Save the resulting disparity maps.  Run your code on the 
Tsukuba images, and turn in the resulting disparity map.  These are T3bw.jpg 
and T4bw.jpg.  Below we show the images and resulting map that we obtain. 

 



     
 

Turn in your code, and the output on these runs.  The web page also includes  
two random dot stereograms, I1L and I1R.  Run your code on these and turn 
in an image showing the resulting disparity map. 

 
f. 20 points We can also use stereo to interpolate between two images, and find 

intermediate images.  To see this, suppose that point i in the left image has a 
disparity of 4.  This means that it appears in the right image at pixel i – 4.  So, 
if we had a viewpoint halfway in between the two images, this point would 
appear at pixel i – 2.  So, we can generate a new image containing this pixel 
value.   

 
There are a couple of complications.  First, the intermediate location of this 
pixel might not be an integer.  Second, some of the pixels of the intermediate 
image might not be filled in by these values.  (There are also occluded pixels, 
but we can just ignore these).  This means that we must interpolate the values 
of all pixels in the intermediate image, using the values of matched pixels. 
 
For example, suppose the left image is [120 130 140 200 210] and the right 
image is [122 141 202 208 240].  We compute a disparity map of [0 -1 1 1 1].  
We want to generate a new image, taken from halfway between these two 
images.  We can then assign a value of 121 to the first pixel in the new image 
(I’m using the average of 120 and 122, since these two pixels are matched.).  
Next, we can determine that halfway between the second and third pixels we 
should have a value of 140.5.  Using linear interpolation, we can calculate that 
the second pixel should have a value of (1/3)*121 + (2/3)*140.5 = 134.   
 
Using this approach, write a program to use the disparities you compute to 
generate an image that is halfway between the left and right images.  Test this 
on the two face images given.  Here are the results we get: 
 

       
 
 
 

 



2. Challenge Problem: 
a. 5 points: You can speed up your code by limiting the possible disparities.  

For example, try limiting the maximum disparity to 16 pixels.  Explain 
how you can do this, and report on how much it speeded up your program. 

b. 10 points: Dynamic programming fills up an entire cost table, C.  
However, this may not be necessary.  If we consider how shortest path 
algorithms work, we can see that some entries in the table may not need to 
be filled, because their neighbors already have high costs.  Implement a 
shortest path approach to computing stereo.  Explain how you did this. 
How much does this speed thing up?   

c. Up to 15 points:  The stereo algorithm we have implemented doesn’t 
really handle slanted surfaces in an ideal way.  This problem is explained 
and resolved in the paper: “Efficient Dense Stereo with Occlusions for 
New View-Synthesis by Four-State Dynamic Programming,” by A. 
Criminis, J. Shotton, A. Blake, C. Rother, P.H.S. Torr.  Look up this 
paper.  For partial credit, explain the problem we have with slanted 
surfaces and how this paper resolves it.  For full credit, implement their 
approach and compare to the approach in this problem set. 

d. We’re open to other small projects for extra credit.  Feel free to email me 
if there’s something else you’d like to try.  


