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RANSAC

• = Random Sample Consensus

– Hypothesize and test.

• Used for Parametric Matching

– Want to match two things.

– Hypothesized match can be described by 
parameters (eg., translation, affine'.)

• Match enough features to determine a 
hypothesis.  See if it is good.  Repeat.

Parametric Grouping: Grouping 

Points into Lines

Basic Facts about Lines

(a,b)

c
(x,y) is on line if (x,y).(a,b) = c

⇒ax + by = c

Distance from (x,y) to line is 

(a,b).*(x,y) = ax + by         

provided a*a + b*b = 1
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Line Grouping Problem

This is difficult because of:

• Extraneous data: Clutter

• Missing data

• Noise
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Precise Definition?

• Find a line that is close to as many 

points as possible.

– Close could mean within ε pixels.

• Find k lines so that every point is close 

to one of them.

– Close could mean with ε pixels.

– Or, could mimimize sum of squares 

distance from each point to nearest line.

Brute Force Approach

• Try every possibility

– Every line (infinite)

– Fit a line to every subset of points 
(exponential).

• Discrete sampling

– Could sample slope and offset uniformly.

– Sample random lines

– Random lines likely to be good.
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RANSAC: Random Sample 

Consensus 

• Generate Lines using Pairs of Points

How many samples?

Suppose p is fraction of points from line.

n points needed to define hypothesis (2 for 

lines)

k samples chosen.  

Probability one sample correct is: 

knp )1(1 −−

RANSAC for Lines: Continued

• Decide how good a line is: 

– Count number of points within ε of line.

• Parameter ε measures the amount of noise 

expected.

– Other possibilities.  For example, for these 

points, also look at how far they are.

• Pick the best line.
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(Forsyth & Ponce)

RANSAC for Image Matching
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Image Matching

• Detect features in each image (eg., use blob 
detection).

• Randomly select enough matches to determine a 
transformation that will align the images.
– Eg., if we use an affine transformation, we need 3 matching 
points.  Pick three random points in image one, and match 
each to a random point in image 2.  O(n^6) possible 
matches.

• Apply this transformation to all points in image 1.  

• Count number of points that are transformed “near”
(say within 2 pixels) of a point in image 2.

• Pick transformation that matches the most points.

Improvements

• Problem: O(n^6) matches is a lot.  Only one 

in O(n^3) will be right.

• Solution: for each point in image 1, use SIFT 

descriptors to find point in image 2 that 

provides best match.

• If most of these matches are correct, we now 

have much higher chance of finding good 

matches, with a small chance that we miss 

some.


