
1

RANSAC

• = Random Sample Consensus

– Hypothesize and test.

• Used for Parametric Matching

– Want to match two things.

– Hypothesized match can be described by
parameters (eg., translation, affine'.)

• Match enough features to determine a
hypothesis. See if it is good. Repeat.

Parametric Grouping: Grouping

Points into Lines

Basic Facts about Lines

(a,b)

c
(x,y) is on line if (x,y).(a,b) = c

⇒ax + by = c

Distance from (x,y) to line is

(a,b).*(x,y) = ax + by

provided a*a + b*b = 1

2

Line Grouping Problem

This is difficult because of:

• Extraneous data: Clutter

• Missing data

• Noise

3

Precise Definition?

• Find a line that is close to as many

points as possible.

– Close could mean within ε pixels.

• Find k lines so that every point is close

to one of them.

– Close could mean with ε pixels.

– Or, could mimimize sum of squares

distance from each point to nearest line.

Brute Force Approach

• Try every possibility

– Every line (infinite)

– Fit a line to every subset of points
(exponential).

• Discrete sampling

– Could sample slope and offset uniformly.

– Sample random lines

– Random lines likely to be good.

4

RANSAC: Random Sample

Consensus

• Generate Lines using Pairs of Points

How many samples?

Suppose p is fraction of points from line.

n points needed to define hypothesis (2 for

lines)

k samples chosen.

Probability one sample correct is:

knp)1(1 −−

RANSAC for Lines: Continued

• Decide how good a line is:

– Count number of points within ε of line.

• Parameter ε measures the amount of noise

expected.

– Other possibilities. For example, for these

points, also look at how far they are.

• Pick the best line.

5

(Forsyth & Ponce)

RANSAC for Image Matching

6

Image Matching

• Detect features in each image (eg., use blob
detection).

• Randomly select enough matches to determine a
transformation that will align the images.
– Eg., if we use an affine transformation, we need 3 matching
points. Pick three random points in image one, and match
each to a random point in image 2. O(n^6) possible
matches.

• Apply this transformation to all points in image 1.

• Count number of points that are transformed “near”
(say within 2 pixels) of a point in image 2.

• Pick transformation that matches the most points.

Improvements

• Problem: O(n^6) matches is a lot. Only one

in O(n^3) will be right.

• Solution: for each point in image 1, use SIFT

descriptors to find point in image 2 that

provides best match.

• If most of these matches are correct, we now

have much higher chance of finding good

matches, with a small chance that we miss

some.

