
Announcements

• Final Exam Dec 15, 8 am (not my idea).

• Practice final handout Thursday.
• Review session: think about good times Wed

afternoon.
• Office hours 12/13 at 1:00.
• Please do online class evaluation.

• Questions on problem set?

Recognizing Objects: Feature
Matching

• Problem: Match when viewing conditions
change a lot.
– Lighting changes: brightness constancy false.
– Viewpoint changes: appearance changes, many

viewpoints.
• One Solution: Match using edge-based features.

– Edges less variable to lighting, viewpoint.
– More compact representation can lead to efficiency.

• Match image or object to image
– If object, matching may be asymmetric
– Object may be 3D.

Problem Definition

• An Image is a set of 2D geometric features,
along with positions.

• An Object is a set of 2D/3D geometric
features, along with positions.

• A pose positions the object relative to the
image.
– 2D Translation; 2D translation + rotation; 2D

translation, rotation and scale; planar or 3D object
positioned in 3D with perspective or scaled orth.

• The best pose places the object features
nearest the image features

Strategy

• Build feature descriptions

• Search possible poses.
– Can search space of poses
– Or search feature matches, which produce pose

• Transform model by pose.

• Compare transformed model and image.
• Pick best pose.

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Example

Evaluate Pose

• We look at this first, since it defines the
problem.

• Again, no perfect measure;
– Trade-offs between veracity of measure

and computational considerations.

Chamfer Matching

�
i

d

For every edge point in
the transformed object,
compute the distance to
the nearest image edge
point. Sum distances.

||),||||,,||||,,min(||
21 1 mii

n

i i
qpqpqp ��

=

Main Feature:

• Every model point matches an image
point.

• An image point can match 0, 1, or more
model points.

Variations
• Sum a different distance

– f(d) = d2

– or Manhattan distance.
– f(d) = 1 if d < threshold, 0 otherwise.

– This is called bounded error.

• Use maximum distance instead of sum.
– This is called: directed Hausdorff distance.

• Use other features
– Corners.
– Lines. Then position and angles of lines must be

similar.
• Model line may be subset of image line.

Other comparisons

• Enforce each image feature can match
only one model feature.

• Enforce continuity, ordering along
curves.

• These are more complex to optimize.

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Pose Search

• Simplest approach is to try every pose.
• Two problems: many poses, costly to

evaluate each.
• We can reduce the second problem

with:

Pose: Chamfer Matching with the
Distance Transform

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Example: Each pixel has (Manhattan)
distance to nearest edge pixel.

D.T. Adds Efficiency

• Compute once.
• Fast algorithms to compute it.
• Makes Chamfer Matching simple.

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Then, try all translations of model edges. Add
distances under each edge pixel.

That is, correlate edges with Distance Transform

Computing Distance Transform

• It’s only done once, per problem, not once
per pose.

• Basically a shortest path problem.
• Simple solution passing through image once

for each distance.
– First pass mark edges 0.
– Second, mark 1 anything next to 0, unless it’s

already marked. Etc….
• Actually, a more clever method requires 2

passes.

Pose: Ransac

• Match enough features in model to
features in image to determine pose.

• Examples:
– match a point and determine translation.
– match a corner and determine translation

and rotation.
– Points and translation, rotation, scaling?
– Lines and rotation and translation?

Complexity

• Suppose model has m points and image has n
points. There are nm matches.

When we match a model point, there is a 1/n
probability this match is right.

If we match k model points, probability all are right is
approximately (1/n)k.

If we repeat this L times, probability that at least one
pose is right is:

L
k

n
)

1
1(1 �

�

�
�
�

�−−

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Computing Pose: Points

• Solve I = S*P.
– In Structure-from-Motion, we knew I.

– In Recognition, we know I and P.

• This is just set of linear equations
– Ok, maybe with some non-linear

constraints.

Linear Pose: 2D Translation

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

...

10

01...
21

21

21

21

n

n

y

x

n

n yyy

xxx

t

t

vvv

uuu

We know x,y,u,v, need to find translation.

For one point, u1 - x1 = tx ; v1 - x1 = ty

For more points we can solve a least squares
problem.

Linear Pose: 2D rotation,
translation and scale

θθ

θθ
θθ

sin,coswith

111

...

111

...

cossin

sincos...

21

21

21

21

21

21

sbsa

yyy

xxx

tab

tba

yyy

xxx

t

t
s

vvv

uuu

n

n

y

x

n

n

y

x

n

n

==

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�

−

�
�
�

�

�

�
�
�

�

�

��
�

�
��
�

�

−
=�

�

�
�
�

�

• Notice a and b can take on any values.

• Equations linear in a, b, translation.

• Solve exactly with 2 points, or
overconstrained system with more.

s
abas =+= θcos22

Linear Pose: 3D Affine

��
�
�
�

�

�

��
�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

...

...

21

21

21

3,22,21,2

3,12,11,1

21

21

n

n

n

y

x

n

n

zzz

yyy

xxx

tsss

tsss

vvv

uuu

Pose: Scaled Orthographic
Projection of Planar points

��
�
�
�

�

�

��
�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

000

...

...
21

21

3,22,21,2

3,12,11,1

21

21 n

n

y

x

n

n
yyy

xxx

tsss

tsss

vvv

uuu

s1,3, s2,3 disappear. Non-linear constraints disappear with
them.

Non-linear pose

• A bit trickier. Some results:
• 2D rotation and translation. Need 2

points.
• 3D scaled orthographic. Need 3 points,

give 2 solutions.
• 3D perspective, camera known. Need 3

points. Solve 4th degree polynomial. 4
solutions.

Transforming the Object

��
�
�
�

�

�

��
�
�
�

�

�

�
�

�
�
�

�=�
�

�
�
�

�

111

...

????

????

???

???

21

21

21

4321

4321

n

n

n

zzz

yyy

xxx

vvvv

uuuu

��
�
�
�

�

�

��
�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

...

???

???

21

21

21

3,22,21,2

3,12,11,1

4321

4321

n

n

n

y

x

zzz

yyy

xxx

tsss

tsss

vvvv

uuuu

We don’t really want to know pose, we want to know
what the object looks like in that pose.

��
�
�
�

�

�

��
�
�
�

�

�

��
�

�
��
�

�
=�

�

�
�
�

�

111

...

...

21

21

21

3,22,21,2

3,12,11,1

21

21

n

n

n

y

x

n

n

zzz

yyy

xxx

tsss

tsss

vvv

uuu

We start with:

Solve for pose:

Project rest of
points:

Recap: Recognition w/ RANSAC

1. Find features in model and image.
– Such as corners.

2. Match enough to determine pose.
– Such as 3 points for planar object, scaled orthographic

projection.
3. Determine pose.
4. Project rest of object features into image.
5. Look to see how many image features they match.

– Example: with bounded error, count how many object
features project near an image feature.

6. Repeat steps 2-5 a bunch of times.
7. Pick pose that matches most features.

Figure from “Object recognition using alignment,” D.P. Huttenlocher and S.
Ullman, Proc. Int. Conf. Computer Vision, 1986, copyright IEEE, 1986

Recognizing 3D Objects

• Previous approach will work.
• But slow. RANSAC considers n3m3

possible matches. About m3 correct.
• Solutions:

– Grouping. Find features coming from
single object.

– Viewpoint invariance. Match to small set of
model features that could produce them.

Grouping: Continuity

Connectivity

• Connected lines likely to come from boundary
of same object.
– Boundary of object often produces connected

contours.
– Different objects more rarely do; only when

overlapping.

• Connected image lines match connected
model lines.
– Disconnected model lines generally don’t appear

connected.

Other Viewpoint Invariants

• Parallelism
• Convexity
• Common region
• ….

Figures by kind permission of Eric Grimson; further information can be
obtained from his web site http://www.ai.mit.edu/people/welg/welg.html.

Figures by kind permission of Eric Grimson; further information can be
obtained from his web site http://www.ai.mit.edu/people/welg/welg.html.

Figures by kind permission of Eric Grimson; further information can be
obtained from his web site http://www.ai.mit.edu/people/welg/welg.html.

Figures by kind permission of Eric Grimson; further information can be
obtained from his web site http://www.ai.mit.edu/people/welg/welg.html.

Figures by kind permission of Eric Grimson; further information can be
obtained from his web site http://www.ai.mit.edu/people/welg/welg.html.

What we didn’t talk about

• Smooth 3D objects.
• Can we find the guaranteed optimal

solution?
• Indexing with invariants.
• Error propagation.
• Classification/Learning

