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Affine Structure-from-Motion: A 
lot of frames (1)





















































=



































111

...

.

.

.

...

...

...

...

...

21

21

21

3,22,21,2

3,12,11,1

22

3,2

2

2,2

2

1,2

22

3,1

2

2,1

2

1,1

11

3,2

1

2,2

1

1,2

11

3,1

1

2,1

1

1,1

21

21

22

2

2

1

22

2

2

1

11

2

1

1

11

2

1

1

n

n

n

m

y

mmm

m

x

mmm

y

x

y

x

m

n

mm

m

n

mm

n

n

n

n

zzz

yyy

xxx

tsss

tsss

tsss

tsss

tsss

tsss

vvv

uuu

vvv

uuu

vvv

uuu

I S P

First Step: Solve for Translation 
(1)

• This is trivial, because we can pick a simple 
origin.
– World origin is arbitrary.
– Example: We can assume first point is at origin.

• Rotation then doesn’t effect that point.
• All its motion is translation.

– Better to pick center of mass as origin.
• Average of all points.
• This also averages all noise.

Specifically, we can never tell where the world 
points were to begin  with.  Adding one to every 
x coordinate in P and then subtracting 1 in every 
tx is undetectable.  

So, wlog we can assume that sum(P(k,:)) = 0 for 
k from 1 to 3, ie., sum(x1 … xn) = 0, 
sum(y1…yn) = 0, sum(z1 … zn) = 0.

Rotation doesn’t move the origin, which is now 
the center of mass.  Neither does scaled 
orthographic projection.  So, this only moves 
from translation.  

Explicitly, we assume sum(p) = (0,0,0)^T.  Then:  
sum(s*R(p)) = s*R(sum(p)) = s*R(0,0,0)^T = 
(0,0,0)^T.  (^T means transpose).

More explicitly, suppose sum(p) = (0,0,0,n)^T.  Then, 
sum(R*P) = R*(sum(P)) = R*(0,0,0,n)^T = (0,0,0,n)^T.  
Sum(T*R*P) = T*(0,0,0,n)^T = (ntx,nty,ntz,n)^T.  (Or 
just look at the 2x4 projection matrix).  If we subtract tx
or ty from every row, then the residual is 
(s11,s12,s13;s21,s22,s23)*P.  I = s part of matrix + t 
part of matrix.  
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Even more explicitly.  Consider the first row of the 
image matrix I.  Average together all the entries in 
this row.  This gives us:

sum( (s{1,1},s{1,2},s{1,3})*(x_i,y_i,z_i) + tx)/n

= (s{1,1},s{1,2},s{1,3})*sum(x_i,y_i,z_i)/n + tx

= (s{1,1},s{1,2},s{1,3})*(0,0,0) + tx = tx.  

So we’ve solved for tx.  If we subtract tx from every 
element in the first row of I, we remove the effects of 
translation.  

First Step: Solve for Translation 
(2)
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First Step: Solve for Translation 
(3)
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As if by magic, there’s no translation.

Rank Theorem
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I~

I~

I~

has rank 3.

This means there 
are 3 vectors 
such that every 
row of      is a 
linear 
combination of 
these vectors.  
These vectors 
are the rows of P.

S

P

Solve for S

• SVD is made to do this.

UDVI =~ D is diagonal with non-increasing 
values.

U and V have orthonormal rows.

Ignoring values that get set to 0, we 
have U(:,1:3) for S, and 

D(1:3,1:3)*V(1:3,:) for P.

Linear Ambiguity (as before)
I~

I~

= U(:,1:3) * D(1:3,1:3) * V(1:3,:)

= (U(:,1:3) * A) * (inv(A) *D(1:3,1:3) * V(1:3,:))

Noise

• has full rank.
• Best solution is to estimate I that’s as near to 

as possible, with estimate of I having rank 3.
• Our current method does this.

I~

I~

Weak Perspective Motion
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I~ S

P

Row 2k and 
2k+1 of S should 
be orthogonal.  
All rows should 
be unit vectors.

(Push all scale 
into P).

=(U(:,1:3)*A)*(inv(A) *D(1:3,1:3)*V(1:3,:))

Choose A so  
(U(:,1:3) * A) 
satisfies these 
conditions.I~
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Related problems we won’t cover

• Missing data.
• Points with different, known noise.
• Multiple moving objects.

Final Messages

• Structure-from-motion for points can be 
reduced to linear algebra.

• Epipolar constraint reemerges.
• SVD important.
• Rank Theorem says the images a 

scene produces aren’t complicated 
(also important for recognition).
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