Announcements

¢ Quiz Thursday

¢ Quiz Review Tomorrow: AV Williams 4424,
4pm.

¢ Practice Quiz handout.

Matching

« Compare region of image to region of image.
— We talked about this for stereo.
— Important for motion.
« Epipolar constraint unknown.
« But motion small.
— Recognition
« Find object in image.
« Recognize object.
¢ Today, simplest kind of matching. Intensities
similar.

Matching in Motion: optical
flow
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— Solve pixel correspondence problem
« given a pixel in H, look for nearby pixels of the same
colorin |
« How to estimate pixel motion from image H to
image 1?

Matching: Finding objects

Matching: Identifying Objects
-

Matching: what to match

¢ Simplest: SSD with windows.
— We talked about this for stereo as well:

— Windows needed because pixels not
informative enough? (More on this later).
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size .

Experiment,, al Ci on
Robotics and Automation, 1991.
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nonlinear diffusion. International Journal of
Computer Vision, 28(2):155-174, July 1998
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Subpixel SSD

* When motion is a few pixels or less,
motion of an integer no. of pixels can be
insufficient.
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Bilinear Interpolation

To compare pixels that are not at integer grid points, we
resample the image.

Assume image is locally bilinear.

I(x,y) = ax + by + cxy + d = 0. Given the value of the
image at four points: I(x,y), I(x+1,y), I(x,y+1), I(x+1,y+1)
we can solve for a,b,c,d linearly. Then, for any u
between x and x+1, for any v between y and y+1, we use
this equation to find I(u,v).

Matching: How to Match
Efficiently

» Baseline approach: try everything.
agmin Y Wx,y) =1 (x+u,y+v)Y
u,v

— Could range over whole image.
— Or only over a small displacement.

Matching: Multiscale
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The Gaussian Pyramid
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When motion is small: Optical Flow
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* Small motion: (u and v are less than 1 pixel)
« Brute force not possible

« suppose we take the Taylor series expansion of I:
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Optical flow equation

¢ Combining these two equations

Optical flow equation
T +5T-[ni]

¢ Q: how many unknowns and equations per
pixel?

Intuitively, what does this constraint
mean?

— The component of the flow in the gradient
direction is determined

— The component of the flow parallel to an edge
is unknown

This explains the Barber Pole illusion (Seitz)
http://www.sandlotscience.com/Ambiguous/barberpole.htm
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¢ In the limit as u and v go to zero, this
becomes exact
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First Order Approximation
When we assume that: .. o) + oy 4 21,
We assume an image
locally is:
(Seitz)

Aperture problem

(Seitz)




Aperture problem

(Seitz)

Solving the aperture problem

« How to get more equations for a pixel?
— Basic idea: impose additional constraints
« most common is to assume that the flow field is smooth

locally
« one method: pretend the pixel's neighbors have the
same (u,v)
— If we use a 5x5 window, that gives us 25 equations per
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Lukas-Kanade flow
B g =1
A= —— ninimice L6 8|2
« We have more equations than unknowns: solve least
squares problem. This is given by:
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— Summations over all pixels in the KxK window
—Does 471 look familiar? (Seitz)

Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation
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When is This Solvable?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues A, and A, of ATA should not be too small
« ATA should be well-conditioned
— A4/ A, should not be too large (A, = larger eigenvalue) (Seitz

Does this seem familiar?
Formula for Finding Corners

We look at matrix:

) Gradient with respect to X,
Sum over a small region, times gradient with respect to y
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WHY THIS?

Matrix is symmetric

First, consider case where:
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This means all gradients in neighborhood are:
(k,0) or (0,c) or (0,0) (or off-diagonals cancel).
What is region like if:
1. A1=0?
2. \2=07?
3. M1=0 and A2=07?
4. \1>0 and A2>07?




General Case:

From Singular Value Decomposition it follows
that since C is symmetric:

A, O
C=R"'.
5 A

where R is a rotation matrix.

So every case is like one on last slide.

So, corners are the things we
can track
» Corners are when A1, A2 are big; this is
also when Lucas-Kanade works.

e Corners are regions with two different
directions of gradient (at least).

 Aperture problem disappears at
corners.

¢ At corners, 1t order approximation fails.

SIwiwn”
— large gradients, all the same
—large A, small A,
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Low texture region

yIwiwn”
— gradients have small magnitude
—small A, small A,

(Seitz)

High textured region
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—large Ay, large A,
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Observation

¢ This is a two image problem BUT
— Can measure sensitivity by just looking at one of
the images!

— This tells us which pixels are easy to track, which
are hard
« very useful later on when we do feature tracking...

(Seitz)




Errors in Lukas-Kanade

* What are the potential causes of errors in this
procedure?
— Suppose ATA is easily invertible
— Suppose there is not much noise in the image
* When our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small
— A point does not move like its neighbors
« window size is too large
« what is the ideal window size? (Seitz)

Iterative Refinement

 |terative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use bilinear interpolation
- Repeat until convergence

(Seitz)

If Motion Larger: Reduce the
resolution (Seitz)

Optical flow result

(Seitz)

Dewey morph

Tracking features over many
Frames

« Compute optical flow for that feature for each
consecutive H, |
* When will this go wrong?
— Occlusions—feature may disappear
« need to delete, add new features
— Changes in shape, orientation
« allow the feature to deform
— Changes in color
— Large motions

« will pyramid techniques work for feature
tracking?

(Seitz)

Applications:

« MPEG—application of feature tracking

(Seitz)



http://www.pixeltools.com/pixweb2.html

Image alignment

* Goal: estimate

single (u,v)

translation for entire

image

— Easier subcase:
solvable by
pyramid-based
Lukas-Kanade

(Seitz)

Summary

¢ Matching: find translation of region to
minimize SSD.

— Works well for small motion.

— Works pretty well for recognition sometimes.
¢ Need good algorithms.

— Brute force.

— Lucas-Kanade for small motion.

— Multiscale.
« Aperture problem: solve using corners.

— Other solutions use normal flow.
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