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Announcements

• Quiz Thursday
• Quiz Review Tomorrow: AV Williams 4424, 

4pm.
• Practice Quiz handout.

Matching

• Compare region of image to region of image.
– We talked about this for stereo.
– Important for motion.

• Epipolar constraint unknown.  
• But motion small.

– Recognition
• Find object in image.
• Recognize object.

• Today, simplest kind of matching.  Intensities 
similar.

Matching in Motion:  optical 
flow

• How to estimate pixel motion from image H to 
image I?

– Solve pixel correspondence problem
• given a pixel in H, look for nearby pixels of the same 

color in I

Matching: Finding objects

Matching: Identifying Objects Matching: what to match

• Simplest: SSD with windows.
– We talked about this for stereo as well:
– Windows needed because pixels not 

informative enough?  (More on this later).
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Comparing Windows: =
?
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Most
popular

(Camps)

Window size

W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo Matching 

Algorithm with an Adaptive Window: Theory and 
Experiment,, Proc. International Conference on 
Robotics and Automation, 1991. 

• D. Scharstein and R. Szeliski. Stereo matching with 
nonlinear diffusion. International Journal of 
Computer Vision, 28(2):155-174, July 1998 

• Effect of window 
size

(Seitz)

Subpixel SSD

• When motion is a few pixels or less, 
motion of an integer no. of pixels can be 
insufficient.

Bilinear Interpolation
To compare pixels that are not at integer grid points, we 
resample the image.

Assume image is locally bilinear.  

I(x,y) = ax + by + cxy + d = 0.  Given the value of the 
image at four points: I(x,y), I(x+1,y), I(x,y+1), I(x+1,y+1) 
we can solve for a,b,c,d linearly.  Then, for any u 
between x and x+1, for any v between y and y+1, we use 
this equation to find I(u,v). 

Matching: How to Match 
Efficiently

• Baseline approach: try everything.

– Could range over whole image.
– Or only over a small displacement.
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Matching: Multiscale

(Weizmann Institute Vision Class)
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(Weizmann Institute Vision Class)

When motion is small: Optical Flow

• Small motion:  (u and v are less than 1 pixel)
• Brute force not possible

• suppose we take the Taylor series expansion of I:

(Seitz)

Optical flow equation

• Combining these two equations

• In the limit as u and v go to zero, this 
becomes exact

(Seitz)

Optical flow equation

• Q:  how many unknowns and equations per 
pixel?

• Intuitively, what does this constraint 
mean?
– The component of the flow in the gradient 

direction is determined
– The component of the flow parallel to an edge 

is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/barberpole.htm

(Seitz)

First Order Approximation

When we assume that:  

We assume an image 
locally is:

(Seitz)

Aperture problem

(Seitz)
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Aperture problem

(Seitz)

Solving the aperture problem
• How to get more equations for a pixel?

– Basic idea:  impose additional constraints
• most common is to assume that the flow field is smooth 

locally
• one method:  pretend the pixel’s neighbors have the 

same (u,v)
– If we use a 5x5 window, that gives us 25 equations per 

pixel!

(Seitz)

Lukas-Kanade flow

• We have more equations than unknowns: solve least 
squares problem.  This is given by:

– Summations over all pixels in the KxK window
– Does         look familiar? (Seitz)

Conditions for solvability

– Optimal (u, v) satisfies Lucas-Kanade equation

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues λ1 and λ2 of ATA should not be too small
• ATA should be well-conditioned

– λ1/ λ2 should not be too large (λ1 = larger eigenvalue) (Seitz)

Does this seem familiar?  
Formula for Finding Corners
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We look at matrix:

Sum over a small region, 
the hypothetical corner

Gradient with respect to x, 
times gradient with respect to y

Matrix is symmetric WHY THIS?
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First, consider case where:

This means all gradients in neighborhood are:

(k,0)   or   (0, c)   or    (0, 0)  (or off-diagonals cancel).

What is region like if:

1. λ1 = 0?

2. λ2 = 0?

3. λ1 = 0   and   λ2 = 0?

4. λ1 > 0   and   λ2 > 0?
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General Case:

From Singular Value Decomposition it follows 
that since C is symmetric:

RRC 
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where R is a rotation matrix.

So every case is like one on last slide.

So, corners are the things we 
can track

• Corners are when λ1, λ2 are big; this is 
also when Lucas-Kanade works.  

• Corners are regions with two different 
directions of gradient (at least).

• Aperture problem disappears at 
corners.

• At corners, 1st order approximation fails.

Edge

– large gradients, all the same
– large λ1, small λ2

(Seitz)

Low texture region

– gradients have small magnitude
– small λ1, small λ2

(Seitz)

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

(Seitz)

Observation

• This is a two image problem BUT
– Can measure sensitivity by just looking at one of 

the images!
– This tells us which pixels are easy to track, which 

are hard
• very useful later on when we do feature tracking...

(Seitz)
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Errors in Lukas-Kanade

• What are the potential causes of errors in this 
procedure?
– Suppose ATA is easily invertible
– Suppose there is not much noise in the image

• When our assumptions are violated
– Brightness constancy is not satisfied
– The motion is not small
– A point does not move like its neighbors

• window size is too large
• what is the ideal window size? (Seitz)

Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-

Kanade equations
2. Warp H towards I using the estimated flow field

- use bilinear interpolation
- Repeat until convergence

(Seitz)

If Motion Larger: Reduce the 
resolution (Seitz) Optical flow result

Dewey morph (Seitz)

Tracking features over many 
Frames

• Compute optical flow for that feature for each 
consecutive H, I

• When will this go wrong?
– Occlusions—feature may disappear

• need to delete, add new features

– Changes in shape, orientation
• allow the feature to deform

– Changes in color
– Large motions

• will pyramid techniques work for feature 
tracking?

(Seitz)

Applications:

• MPEG—application of feature tracking
– http://www.pixeltools.com/pixweb2.html

(Seitz)

http://www.pixeltools.com/pixweb2.html
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Image alignment

• Goal:  estimate 
single (u,v) 
translation for entire 
image
– Easier subcase:  

solvable by 
pyramid-based 
Lukas-Kanade 

(Seitz)

Summary

• Matching: find translation of region to 
minimize SSD.
– Works well for small motion.
– Works pretty well for recognition sometimes.

• Need good algorithms.
– Brute force.
– Lucas-Kanade for small motion.
– Multiscale.

• Aperture problem: solve using corners.
– Other solutions use normal flow.
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