
1

Announcements

• Final Exam May 16th, 8 am (not my idea).
• Practice quiz handout 5/8.
• Review session: think about good times.

• PS5: For challenge problems, use built in
functions as you like. Be careful that you use
them properly. Useful ones: conv2, fspecial,
imresize.

• Questions on problem set?
• Readings for today and Tuesday:
Forsyth and Ponce 18.1,18.2,18.5,18.6.

Movies we missed last time:

Recognizing Objects: Feature
Matching

• Problem: Match when viewing conditions
change a lot.
– Lighting changes: brightness constancy false.
– Viewpoint changes: appearance changes, many

viewpoints.
• One Solution: Match using edge-based features.

– Edges less variable to lighting, viewpoint.
– More compact representation can lead to efficiency.

• Match image or object to image
– If object, matching may be asymmetric
– Object may be 3D.

• Line finding was an example: line=object; points=image.

Lighting affects appearance

Problem Definition

• An Image is a set of 2D geometric features,
along with positions.

• An Object is a set of 2D/3D geometric
features, along with positions.

• A pose positions the object relative to the
image.
– 2D Translation; 2D translation + rotation; 2D

translation, rotation and scale; planar or 3D object
positioned in 3D with perspective or scaled orth.

• The best pose places the object features
nearest the image features

Strategy

• Build feature descriptions
• Search possible poses.

– Can search space of poses
– Or search feature matches, which produce pose

• Transform model by pose.
• Compare transformed model and image.
• Pick best pose.

2

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Example

Evaluate Pose

• We look at this first, since it defines the
problem.

• Again, no perfect measure;
– Trade-offs between veracity of measure

and computational considerations.

Chamfer Matching

∑
i

d

For every edge point in
the transformed object,
compute the distance to
the nearest image edge
point. Sum distances.

||),||||,,||||,,min(||
21 1 mii

n

i i
qpqpqp∑

=

Main Feature:

• Every model point matches an image
point.

• An image point can match 0, 1, or more
model points.

Variations
• Sum a different distance

– f(d) = d2

– or Manhattan distance.
– f(d) = 1 if d < threshold, 0 otherwise.

– This is called bounded error.

• Use maximum distance instead of sum.
– This is called: directed Hausdorff distance.

• Use other features
– Corners.
– Lines. Then position and angles of lines must be

similar.
• Model line may be subset of image line.

3

Other comparisons

• Enforce each image feature can match
only one model feature.

• Enforce continuity, ordering along
curves.

• These are more complex to optimize.

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Pose Search

• Simplest approach is to try every pose.
• Two problems: many poses, costly to

evaluate each.
• We can reduce the second problem

with:

Pose: Chamfer Matching with the
Distance Transform

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Example: Each pixel has (Manhattan)
distance to nearest edge pixel.

D.T. Adds Efficiency

• Compute once.
• Fast algorithms to compute it.
• Makes Chamfer Matching simple.

0
0

0 0
0
0
0

1
1

1

1
1

1

1
1

11
1
1 1

1

2
2

2
2

2
2
2
2

2
2

22 3
3

3
3
3
3

3
3 4

Then, try all translations of model edges. Add
distances under each edge pixel.

4

Computing Distance Transform

• It’s only done once, per problem, not once
per pose.

• Basically a shortest path problem.
• Simple solution passing through image once

for each distance.
– First pass mark edges 0.
– Second, mark 1 anything next to 0, unless it’s

already marked. Etc….
• Actually, a more clever method requires 2

passes.

Pose: Ransac

• Match enough features in model to
features in image to determine pose.

• Examples:
– match a point and determine translation.
– match a corner and determine translation

and rotation.
– Points and translation, rotation, scaling?
– Lines and rotation and translation?

Pose: Generalized Hough
Transform

• Like Hough Transform, but for general
shapes.

• Example: match one point to one point,
and for every rotation of the object its
translation is determined.

Presentation Strategy

• Already discussed finding features.
• First discuss picking best pose since

this defines the problem.
• Second discuss search methods

appropriate for 2D.
• Third discuss transforming model in 2D

and 3D.
• Fourth discuss search for 3D objects.

Computing Pose: Points

• Solve I = S*P.
– In Structure-from-Motion, we knew I.
– In Recognition, we know P.

• This is just set of linear equations
– Ok, maybe with some non-linear

constraints.

5

Linear Pose: 2D Translation























=







111

...

10

01...
21

21

21

21

n

n

y

x

n

n yyy

xxx

t

t

vvv

uuu

We know x,y,u,v, need to find translation.

For one point, u1 - x1 = tx ; v1 - x1 = ty

For more points we can solve a least squares
problem.

Linear Pose: 2D rotation,
translation and scale

θθ

θθ
θθ

sin,coswith

111

...

111

...

cossin

sincos...

21

21

21

21

21

21

sbsa

yyy

xxx

tab

tba

yyy

xxx

t

t
s

vvv

uuu

n

n

y

x

n

n

y

x

n

n

==























−























−

=






• Notice a and b can take on any values.

• Equations linear in a, b, translation.

• Solve exactly with 2 points, or
overconstrained system with more.

s
abas =+= θcos22

Linear Pose: 3D Affine

























=







111

...

...

21

21

21

3,22,21,2

3,12,11,1

21

21

n

n

n

y

x

n

n

zzz

yyy

xxx

tsss

tsss

vvv

uuu

Pose: Scaled Orthographic
Projection of Planar points

























=







111

000

...

...
21

21

3,22,21,2

3,12,11,1

21

21 n

n

y

x

n

n
yyy

xxx

tsss

tsss

vvv

uuu

s1,3, s2,3 disappear. Non-linear constraints disappear with
them.

Non-linear pose

• A bit trickier. Some results:
• 2D rotation and translation. Need 2

points.
• 3D scaled orthographic. Need 3 points,

give 2 solutions.
• 3D perspective, camera known. Need 3

points. Solve 4th degree polynomial. 4
solutions.

Transforming the Object
























=







111

...

????

????

???

???

21

21

21

4321

4321

n

n

n

zzz

yyy

xxx

vvvv

uuuu

























=







111

...

???

???

21

21

21

3,22,21,2

3,12,11,1

4321

4321

n

n

n

y

x

zzz

yyy

xxx

tsss

tsss

vvvv

uuuu

We don’t really want to know pose, we want to know
what the object looks like in that pose.

























=







111

...

...

21

21

21

3,22,21,2

3,12,11,1

21

21

n

n

n

y

x

n

n

zzz

yyy

xxx

tsss

tsss

vvv

uuu

We start with:

Solve for pose:

Project rest of
points:

6

Transforming object with Linear
Combinations



















22

2

2

1

22

2

2

1

11

2

1

1

11

2

1

1
...

n

n

n

n

vvv

uuu

vvv

uuuNo 3D model, but
we’ve seen object
twice before.

























??

??

.

.

.

.

3

4

3

3

3

2

3

1

3

4

3

3

3

2

3

1

22

4

2

3

2

2

2

1

21

4

2

3

2

2

2

1

11

4

1

3

1

2

1

1

11

4

1

3

1

2

1

1

vvvv

uuuu

vvvvv

uuuuu

vvvvv

uuuuu

n

n

n

n

See four points in
third image, need to
fill in location of
other points.

Just use rank
theorem.

Recap: Recognition w/ RANSAC

1. Find features in model and image.
– Such as corners.

2. Match enough to determine pose.
– Such as 3 points for planar object, scaled orthographic

projection.
3. Determine pose.
4. Project rest of object features into image.
5. Look to see how many image features they match.

– Example: with bounded error, count how many object
features project near an image feature.

6. Repeat steps 2-5 a bunch of times.
7. Pick pose that matches most features.

Recognizing 3D Objects

• Previous approach will work.
• But slow. RANSAC considers n3m3

possible matches. About m3 correct.
• Solutions:

– Grouping. Find features coming from
single object.

– Viewpoint invariance. Match to small set of
model features that could produce them.

Grouping: Continuity

Connectivity

• Connected lines likely to come from boundary
of same object.
– Boundary of object often produces connected

contours.
– Different objects more rarely do; only when

overlapping.

• Connected image lines match connected
model lines.
– Disconnected model lines generally don’t appear

connected.

Other Viewpoint Invariants

• Parallelism
• Convexity
• Common region
• ….

7

Planar Invariants























=

























=







111

...

111

000

...

...

21

21

2,21,2

2,11,1

21

21

3,22,21,2

3,12,11,1

21

21

n

n

y

x

n

n

y

x

n

n

yyy

xxx

tss

tss

yyy

xxx

tsss

tsss

vvv

uuu

A t

p1 p2

p3
p4

p4 = p1 + a(p2-p1) + b(p3-p1)

A(p4)+ t = A(p1+a(p2-p1) + b(p3-p1)) + t

= A(p1)+t + a(A(p2)+t – A(p1)-t) + b(A(p3)+t – A(p1)-t)

p4 is linear combination of p1,p2,p3. Transformed p4 is same
linear combination of transformed p1, p2, p3.

What we didn’t talk about

• Smooth 3D objects.
• Can we find the guaranteed optimal

solution?
• Indexing with invariants.
• Error propagation.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

