Announcements

- For future problems sets: email matlab code by 11am, due date (same as deadline to hand in hardcopy).
- Today's reading: Chapter 9, except 9.4.

Texture

- Edge detectors find differences in overall intensity.
- Average intensity is only simplest difference.

Many more issues

Texture boundary detection.
 Shape from texture.
 We'll focus on 1, mention 2.

What is texture?

- Something that repeats with variation.
- Must separate what repeats and what stays the same.
- Model as repeated trials of a random process
 - The probability distribution stays the same.
 - But each trial is different.

Simplest Texture

- Each pixel independent, identically distributed (iid).
- Examples:
 - Region of constant intensity.
 - Gaussian noise pattern.
 - Speckled pattern

Matlab

Texture Discrimination is then Statistics

- Two sets of samples.
- Do they come from the same random process?

What are Right Filters?

- Multi-scale is good, since we don't know right scale a priori.
- Easiest to compare with naïve Bayes:
 Filter image one: (F1, F2, ...)
 Filter image two: (G1, G2, ...)
 S means image one and two have same texture.
- Approximate: *P(F1,G1,F2,G2, ...| S)* By P(*F1,G1*|*S*)*P(*F2,G2*|*S*)*...

What are Right Filters?

- The more independent the better.
 - In an image, output of one filter should be independent of others.
 - Because our comparison assumes independence.
 - Wavelets seem to be best.

Gabor filters are examples of Wavelets

- We know two bases for images:
 Pixels are localized in space.
 Fourier are localized in frequency.
- Wavelets are a little of both.
- Good for measuring frequency locally.

Synthesis with this Representation (Bergen and Heeger)

Markov Model

- Captures local dependencies. – Each pixel depends on neighborhood.
- Example, 1D first order model
- P(p1, p2, ...pn) =
- P(p1)*P(p2|p1)*P(p3|p2,p1)*...
- = P(p1)*P(p2|p1)*P(p3|p2)*P(p4|p3)*...

Example 1st Order Markov Model

• Each pixel is like neighbor to left + noise with some probability.

Matlab

• These capture a much wider range of phenomena.

There are dependencies in Filter Outputs

- Edge
 - Filter responds at one scale, often does at other scales.
 - Filter responds at one orientation, often doesn't at orthogonal orientation.
- Synthesis using wavelets and Markov model for dependencies:
 - DeBonet and Viola
 - Portilla and Simoncelli

We can do this without filters

- Each pixel depends on neighbors.
- 1. As you synthesize, look at neighbors.
- 2. Look for similar neighborhood in sample texture.
- 3. Copy pixel from that neighborhood.
- 4. Continue.

Conclusions

- Model texture as generated from random process.
- Discriminate by seeing whether statistics of two processes seem the same.
- Synthesize by generating image with same statistics.

To Think About

- 3D effects
 - Shape: Tiger's appearance depends on its shape.
 - Lighting: Bark looks different with light angle
- Given pictures of many chairs, can we generate a new chair?

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.