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Abstract

A stereo algorithm is presented that optimizes a maximum likelihood cost function.
The maximum likelihood cost function assumes that corresponding features in the
left and right images are Normally distributed about a common true value and
consists of a weighted squared error term if two features are matched or a (fixed)
cost if a feature is determined to be occluded. The stereo algorithm finds the set of
correspondences that maximize the cost function subject to ordering and uniqueness
constraints.

The stereo algorithm is independent of the matching primitives. However, for
the experiments described in this paper, matching is performed on the individual
pizel intensities. Contrary to popular belief, the pixel-based stereo appears to be
robust for a variety of images. It also has the advantages of (i) providing a dense
disparity map, (ii) requiring no feature extraction and (iii) avoiding the adaptive
windowing problem of area-based correlation methods. Because feature extraction
and windowing are unnecessary, a very fast implementation is possible.

Experimental results reveal that good stereo correspondences can be found using
only ordering and uniqueness constraints, i.e. without local smoothness constraints.
However, it is shown that the original maximum likelihood stereo algorithm exhibits
multiple global minima. The dynamic programming algorithm is guaranteed to find

one, but not necessarily the same one for each epipolar scanline causing erroneous

*Portions of this work were originally reported at the 1992 British Machine Vision Conference [11]
and the 1994 Int. Conf. on Computer Vision and Pattern Recognition [10].
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Stereo algorithms need to determine the set of correct correspondences between features
in (at least) two images. While the epipolar constraint of stereo reduces the search space
to one dimension (along the epipolar lines), the correspondence problem is still difficult.
There are a number of reasons for this, including, (1) feature detection is not perfectly
reliable, so false features may be detected in one or other of the images, (2) features in
one image may be occluded in the other image and (3) establishing the similarity between
two features is confounded by noise in the two images. It should also be recognized that
camera calibration is an important component of any stereo algorithm. However, in this

correspondences which are visible as small local differences between neighboring
scanlines.

Traditionally, regularization, which modifies the original cost function, has been
applied to the problem of multiple global minima. We developed several variants of
the algorithm that avoid classical regularization while imposing several global co-
hesivity constraints. We believe this is a novel approach that has the advantage of
guaranteeing that solutions minimize the original cost function and preserve discon-
tinuities. The constraints are based on minimizing the total number of horizontal
and/or vertical discontinuties along and/or between adjacent epipolar lines, and
local smoothing is avoided. Experiments reveal that minimizing the sum of the
horizontal and vertical discontinuities provides the most accurate results. A high
percentage of correct matches and very little smearing of depth discontinuities are
obtained.

An alternative to imposing cohesivity constraints to reduce the correspondence
ambiguities is to use more than two cameras. We therefore extend the two camera
maximum likelihood to N-cameras. The N-camera stereo algorithm determines
the “best” set of correspondences between a given pair of cameras, referred to as
the principal cameras. Knowledge of the relative positions of the cameras allows
the 3D point hypothesized by an assumed correspondence of two features in the
principal pair to be projected onto the image plane of the remaining N —2 cameras.
These N — 2 points are then used to verify proposed matches. Not only does
the algorithm explicitly model occlusion between features of the principal pair,
but the possibility of occlusions in the N — 2 additional views is also modelled.
Previous work did not model this occlusion process, the benefits and importance
of which are experimentally verified. Like other multi-frame stereo algorithms,
the computational and memory costs of this approach increase linearly with each
additional view. Experimental results are shown for two outdoor scenes. It is clearly
demonstrated that the number of correspondence errors is significantly reduced as

the number of views/cameras is increased.

Introduction

paper, we ignore the calibration issues and assume that the epipolar lines are given.



The motivation for this work was four-fold. First, was to derive a maximum likelhood
(ML) formulation of the stereo problem from a sensor fusion perspective and in this regard
we were strongly influenced by the work of Pattipati et al [29]. The ML estimate does not
require knowledge of a prior probability density function (which may be difficult to esti-
mate) and this distinguishes it from the Bayesian maximum a posteriori (MAP) estimate.
Of course, for diffuse priors, the ML and MAP estimates will coincide. Following the
sensor fusion methodology of Pattipati et al [29] allows the cost of matching or occluding
a feature to be derived based on measurable physical and statistical characteristics of the
scene and the cameras. It should be noted that the occlusion process is explicitly mod-
eled. This stereo framework is developed in Section (2) and is, at the algorithmic level,
independent of the feature primitives.

Second, was an interest in re-evaluating pixel-based stereo in which matching is per-
formed on the individual pizel intensities. In this respect, the work is related to the
intensity-based stereo work of Horn [17] and Gennert [16] and most recently Belhumeur
[5, 4]'. A pixel-based algorithm has the benefits of (i) providing a dense disparity map,
(ii) requiring no feature extraction and (iii) avoiding the adaptive windowing problem of
area-based correlation methods.? However, there is a commonly held belief that since
“stereo projections do not preserve photometric invariance”, pixel-based stereo is “in gen-
eral doomed to failure” [14]. The experimental results described herein contradict this
opinion. In practice, the corresponding intensities in left and right views are usually quite
close. This will certainly be true for frontal planar surfaces viewed under Lambertian
reflection. Gennert [16] modelled the photometric variances due to stereo projections
and showed that the intensities of two corresponding points are approximately related
by a spatially varying multiplicative term that is a function or surface orientation and
reflectance models. Using this model, Gennert developed a stereo algorithm that matched
individual pixel intensities based on a complex cost function consisting of a linear combi-
nation of a brightness matching error, and disparity, multiplier and vertical smoothness
penalties together with several matching constraints. Minimization of this functional is
difficult, computationally expensive and convergence cannot be guaranteed. Neverthe-
less interesting results were reported, that support the premise that pixel-based stereo is
practical. The maximum likelihood framework described in Section (2) assumes that cor-
responding pixels are normally distributed about some true common value.®> Experiments
described in Section (5) revealed that changes in illumination conditions and differences
in camera responses were the principal source of errors to the normal assumption. These
effects appear to dominate over the photometric variances modelled by Gennert. The
changes in illumination and or camera responses were modeled by constant multiplicative
and additive factors that can be easily estimated and compensated for automatically prior

'Whose work is contemporaneous with ours

2Note however, that the underlying framework of Section (2) does not rely on pixel matching. Indeed,
the measurement vector, z; may also consist of a set of intensities, i.e. window-base, or edge parameters,
i.e. feature-based, provided the underlying statistical assumption of Normal distributions is met.

3This assumption is implicit in Belhumeur’s work as well.



to the stereo matching. This simple correction procedure improves the performance of the
ML algorithm and is a significant contribution to the practical application of pixel-based
stereo algorithms.

The third motivation was an attempt to design a stereo algorithm with as few con-
straints as possible. This is in contrast to Belhumeur’s work which is motivated in part
to building more sophisticated Bayesian priors or world models. Both approaches are
interesting. Algorithms exploiting more sophisticated models would be expected to per-
form better on imagery that satisfies the a priori assumptions, but their applicability
may be confined to a restricted class of images. Conversely algorithms exploiting only
a minimal number of constraints may be applicable over a wider class of scenes though
their performance may sometimes be inferior to more specialized algorithms. The initial
ML algorithm imposes no smoothness constraints at all, only uniqueness and order, yet
performs surprisingly well.

The maximum likelihood stereo algorithm assumes that any two corresponding fea-
tures are normally distributed about their true value. This leads to a local matching
cost that is the weighted squared error between the features. This is the only local cost
associated with the matching of two features, i.e. there is no local smoothness cost. This
is interesting since many previous stereo algorithms include a cost based on the disparity
[6, 15, 23] or disparity gradient (the difference in disparity between two pixels divided
by their distance apart) [31, 32] of neighboring pixels. Our work suggests that a local
smoothness cost may not (always) be necessary.

The global cost function that is eventually minimized is the sum of the local costs
of matching pixels plus the sum of occlusion costs for unmatched pixels. The global
optimization is efficiently performed in 1D along each epipolar line assuming monotonic
ordering using dynamic programming. Dynamic programming has been used in many
stereo algorithms, e.g. Baker and Binford [3], Ohta and Kanade [27], Geiger et al [15] and
Belhumeur [5]. These algorithms can be characterized by the global cost function that
is minimized. Baker and Binford first determine correspondences between edges using
dynamic programming and then perform another stage of dynamic programming on the
intensity values between consecutive pairs of corresponding edges in order to “fill in the
gaps”’. Intensity wvariances provide a metric for comparing intensity values. Ohta and
Kanade match intensity segments based on the variance of each segment. The cost of an
occlusion is not fixed but a function of the variance of the occluded region. Their edge-
based method is particularly significant in their effort to extend the global optimization
across epipolar lines to find consistency across scanlines. We believe that the use of a
variance measure to compare features is not appropriate. First, the variance measure ig-
nores the actual intensity values, yet two regions of equal variance might have significantly
different (mean) intensity values. Secondly, since the cost of matching is proportionally to
the variance, there is an inherent bias against matching corresponding textured regions.

The experiments described in Section (3) demonstrate that good correspondences can
be found using only ordering and uniqueness constraints, i.e. without local smoothness
constraints. This is an interesting result. Correspondences errors are, however, clearly
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visible, and an investigation of their source revealed that multiple global minimum exist.
This gives rise to (minor) artifacts in the disparity map. Similar multiple global minima
may exist for other stereo algorithms. The existence of multiple global minima suggest
the need for additional constraints. Traditionally, such constraints have been imposed
by modifing the original cost function with one or more regularization terms. A fourth
motivation for this work was to investigate alternative procedures to classical regulariza-
tion. In Section (4), an alternative procedure is developed in which the globally smoothest
solution, i.e. the solution with the least number of discontinuities, from amongst the
many possible solutions is recovered. We believe this approach, described briefly in [30]
but apparently not utilized, is of significant interest. The spirit of the approach is to give
precedence to the data and only apply constraints in circumstances where the data can
be ambiguously (multiply) interpreted, i.e. prior knowledge (in the form of constraints)
is used as seldom as possible in order to reduce any bias. The additional smoothness or
cohesivity constraints can be incorporated directly into the dynamic programming algo-
rithm with relatively little additional computational cost. The cohesivity constraints are
based on minimizing the total number of horizontal and/or vertical discontinuties between
epipolar lines. Experiments reveal that minimizing the sum of the horizontal and vertical
discontinuities provides the most accurate results.

Geiger et al [15] and Belhumeur and Mumford [5] have developed Bayesian formula-
tions of the stereo problem with strong similarities to the work described here 4. While
Geiger et al match intensity windows rather than individual pixels, the major distinction
of the ML approach described here is the simplicity of the local cost function and the
novel manner in which global cohesivity constraints are imposed.

Matthies [24] has also derived ML and maximum a posteriori (MAP) stereo algorithms
for the cases of (i) a statistically uncorrelated disparity field and (ii) a 1D correlated
disparity field within the epipolar scanline. The former case reduces to a sum of squared
differences over independent windows while the latter case is formulated as a dynamic
programming algorithm to minimizes the sum of squared differences in the individual
pixel intensities plus a regularization term consisting of the sum of squared differences
between neighbouring disparities. While the underlying statistical framework is similar
there are significant differences between the two approaches. Most significantly, Matthies
algorithms do not model the occlusion process. Further, though Matthies 1D correlated
model can be considered to match individual pixels a regularization term is also present
while the uniqueness and monotonic ordering constraints are absent.

Section (5) presents experimental results for a selection of both synthetic and natu-
ral stereograms. These results demonstrate the significant improvement in performance
provided by the intensity normalization procedure and the global cohesivity constraints.
Also of interest is the result of applying the algorithm to a synthetic ellipsoid pair. While
the surface is completely textureless, the ellipsoidal shape is recovered. This shape from
disparate intensity also suggests that the normal assumption is approximately correct for

4 All three approaches were developed contemporaneously but independently.



quite curved surfaces.

While very good correspondence accuracy is achieved, some errors still persist. Several
authors have observed that more reliable correspondences can be found by using more
than two image frames. For example, Ayache [1, 2] describe a trinocular stereo system
in which hypothesized matches between images features in Cameras 1 and 2 are directly
tested by a simple verification step that examines a specific point® in the third image.
Ayache notes that a “third camera reinforces the geometric constraints. This allows
simplification of the matching algorithms, and a reduction of the importance of heuristic
constraints. This makes the procedure faster and the results more robust.” Nevertheless,
three cameras do not eliminate all errors of correspondence and further improvements can
be obtained by using more cameras.

Several researchers have described N-frame stereo algorithms. Two basic strategies
exist. However, the two approaches are not concerned with the same problem. The first
approach attempts to reduce the noise in the 3D position estimates by filtering over N
stereo pairs. For example, early work by Moravec [26] described a common geometric
configuration in which all of the N images frames lie on a horizontal line. Moravec’s
algorithm takes the set of features in the central image and then estimates the feature
correspondences for each of the N —1 stereo pairs. These (noisy) results are then combined
through an additive weighting that attempts to model the relative uncertainty in the
features position due to variations in the length of the baseline®. More recently, Matthies
et al [25] have proposed a Kalman filter based approach to reducing the positional error
by a weighted averaging of the position estimates from many independent stereo pairs.

Note that in the above approaches, each stereo pair is matched independently, without
exploiting the geometric constraints afforded by the N-camera configuration. Second, the
N — 1 independent estimates of a feature’s position are summed to form a weighted
estimate of position. Implicit in such an approach, is the assumption that the errors in
the positional estimates are normally distributed about a nominal value. However, while
random errors most certainly exist, our experience suggests that many correspondence
errors are not random. Instead, such errors are due to inherent ambiguities in the matching
process due to a combination of the peculiarities of the particular cost function to be
minimized, any heuristic constraints that are applied and/or the data itself. Thus, it
appears to be quite common for systematic errors to arise which cannot be removed by
a weighted averaging. If incorrect correspondences were entirely random, then averaging
over a stationary temporal sequence of stereo pairs would converge to a perfect solution.
However, this does not happen in practice.

The second strategy is not concerned with reducing noise but with reducing the num-
ber of correspondence errors. These approaches generalize and exploit the geometric
constraints of trinocular stereo to a N-camera configuration. For example, Kanade et al
[20] describe a multi-baseline stereo algorithm in which the similarity between two fea-

5This point is the projection of the 3D point hypothesized by the assumed correspondence of the two
features in Frames 1 and 2 onto the image plane of camera 3
6The standard deviation in the estimated position of a feature is inversely proportional to the baseline.



tures is measured by the sum of squared differences (SSD) of the intensities over a window.
Given an image Py, the SSD is calculated for each of the NV — 1 possible image pairs. The
geometric constraints are then invoked in order to calculate the sum of the SSD’s (SSSD).
Kanade et al show well localized minima in the SSSD cost function, indicating that much
of the ambiguity present in a single SSD estimate has been eliminated. The reader is
also directed to earlier work by Tsai [34] which describes a similar algorithm that uses a
different similarity measure. However, the experimental results of Tsai are for simulated
images, making comparison with Kanade et al difficult.

Both Kanade et al and Tsai’s methods are window-based correlation methods. These
techniques potentially suffer from (1) the blurring of depth boundaries when a window
overlaps two different surfaces, and (2) the effects due to a lack of an explicit occlusion
model. Recently, Kanade has addressed the issue of occlusion and spurious features [21]
with a method that analyses the shape of the SSSD curve in the vicinity of minima.
However, explicit modelling of the occlusion process is more desirable.

Very recently, Roy and Meuniers’ [33] described a multi-frame stereo algorithm that
has many similarities with the algorithm described here. Once again a particular image
P, is selected and the correspondences are found for each of N — 1 stereo pairs using a
dynamic programming algorithm. However, for each stereo pair, Roy and Meunier apply
the geometric constraints to the remaining N — 2 images to verify the proposed matches.
The cost of matching two features becomes the sum of the squared differences between
features z;, in the left image and z;, in the right image and the (N — 2)z;, where z;,
is the projection of the 3D point onto the image plane of camera s. After determining
the N — 1 stereo correspondences, the (N — 1) depth maps are summed to produce the
final depth map”. We believe that such a summation is incorrect, for reasons discussed
earlier. Another problem not addressed by this algorithm is the fact that the proposed
cost of matching two features does not account for the possibility that the feature may be
occluded in an intermediate view, i.e. it is assumed that corresponding points are visible
in all views.

In Section (6), we derive a maximum likelhood cost function for an N camera arbitrary
stereo configuration. The algorithm determines the “best” set of correspondences between
a given pair of images, which we refer to as the principal pair®. The remaining N — 2
images are used to “verify” hypothesized matches between the principal pair of images.
The algorithm models occlusion not only in the principal stereo pair but also in the N —2
intermediate views. Like other multi-frame stereo algorithms, the computational and
memory costs of this approach increase linearly with each additional view.

Experimental results are then presented for two outdoor scenes. The results clearly
demonstrate significant reductions in correspondence errors as more cameras are used
to verify matches. A small amount of artifacting is present in the solutions that is the

"A final (composite) occlusion map is determined by calculating the logical OR of the individual
occlusion maps.

8Thus, a point visible in the left image but not in the right image will be labelled occluded even if
corresponding points are visible in the intermediate views to determine its depth.



result of the cohesivity constraints and the implicit bias of the algorithm for frontal planar
surfaces. Comparison with a disparity map generated without the intermediate occlusion
model is also presented.

Finally, Section (8) concludes with a discussion of the advantages and disadvantages
of the ML algorithm and possible future work.

2 The Maximum Likelihood Cost Function

In this section, the cost of matching two features, or declaring a feature occluded is first
derived, then a global cost function that must be minimized is derived. To begin, we
introduce some terminology as developed by Pattipati et al [29]. Let the two cameras
be denoted by s = {1,2} and let Z, represent the set of measurements obtained by each
camera along corresponding epipolar lines: Z, = {z; };=, where m, is the number of
measurements from camera s and z,, is a dummy measurement, the matching to which
indicates no corresponding point. For epipolar alignment of the scanlines, Z; is the set
of measurements along a scanline of camera s. The measurements z;, might be simple
scalar intensity values or higher level features. Each measurement z;, is assumed to be
corrupted by additive, white noise.

The condition that measurement z;, from camera 1, and measurement z;, from camera
2 originate from the same location, X, in space, i.e. that z; and z;, correspond to each
other is denoted by Z;, ;,.
corresponding measurement in camera 2 is denoted by Z;, o and similarly for measurements

The condition in which measurement z;, from camera 1 has no

in camera 2. Thus, Z;, o denotes occlusion of feature z;, in camera 2.

Next, we need to calculate the local cost of matching two points z;, and z;,. The
likelihood that the measurement pair Z;, ;, originated from the same point X is denoted
by A(Z;, ;, | X) and is given by

1-Pp
¢

where 0;, ;, is an indicator variable that is unity if a measurement is not assigned a
corresponding point, i.e. is occluded, and zero otherwise and ¢ is the field of view of

Jiqiy
AMZii | X) = ( ) [Pop(2i, | Xi) x Ppp(zs, | Xy)]' 0102 (1)

the camera The term p(z | X) is a probability density distribution that represents the
likelihood of measurement z assuming it originated from a point X = (z, y, 2) in the scene.
The parameter Pp represents the probability of detecting a measurement originating from
X at sensor s. This parameter is a function of the number of occlusions, noise etc.
Conversely, (1 — Pp) may be viewed as the probability of occlusion. If it is assumed that
the measurements vectors z;, are Normally distributed about their ideal value z, then

ploi, 1) =) (20)'S, [ ean {3 o - 2570 - )} @

where d is the dimension of the measurement vectors z;, and S; is the covariance martix
associated with the error (z — z;,). Since the true value, z, is unknown we approximate it
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by maximum likelihood estimate z obtained from the measurement pair Z;
by

1,i» and given
S;lzil + Si_zlzi2
—1 -1
(Si1 + Siz )
where S;, is the covariance associated with measurement z;,.
Now that we have established the cost of the individual pairings Z;, ;,, it is necessary

ZRZ =

(3)

to determine the total cost of all pairs. Denote by ~ a feasible pairing of all measurements
and let I' be the set of all feasible partitions, i.e. I' = {v}. Then we wish to find the
pairings or partition v that maximizes L(v)/L(7o) where the likelihood L(7) of a partition
is defined as

L(y) =p(Z1,Z2 | v) = 1] AMZis | X) (4)

Ziq ig€Y

The maximization of L(v)/L(v) is eqivalent to

min J(y) = min [ In(Z (7)) (5)

vyel'

which leads to

. P¢ )
min J min o iy, In ;
() =mip Tr, 0 (5 i

(23S |
(1= 6iyiy) E(zi1 —2;,)'S™ (2i, — 2, ]} (6)

assuming that the covariances S;, are equal.

The first term of the summation represents the cost of an occlusion in the left or right
views, while the latter term of Equation (6) is the cost of matching two features. Clearly,
as the probability of occlusion (1 — Pp) becomes small the cost of not matching a feature
increases, as expected.

2.1 Dynamic Programming Solution

The minimization of Equation (6) is a classical weighted matching or assignment, problem
[28]. There exist well known algorithms for solving this with polynomial complexity
O(N3) [28]. If the assignment problem is applied to the stereo matching problem directly,
non-physical solutions are obtained. This is because Equation (6) does not constrain a
match at z;, to be close to the match for z;_1),, yet surfaces are usually smooth, except at
depth discontinuities. In order to impose this smoothness condition, previous researchers
have included a disparity penalty to their cost function [6, 23, 31, 32, 35]. The problem
with this approach is that it tends to blur the depth discontinuities as well as introduce
additional free parameters that must be adjusted.
Instead, we make the common assumptions [27] of:

1. uniqueness, i.e. a feature in the left image can match to no more than one feature
in the right image and vice versa and
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Figure 1: A path representing a matching of points in the left and right images. The
solid line represents a legal set of matches. The dashed path violates the uniqueness and
ordering constraints.

2. monotonic ordering, i.e. if z; is matched to z;, then the subsequent measurement
Z;,+1 may only match measurements z;,; for which j > 0.

These constraints are illustrated in Figure (1) where a path representing a matching of
points in the left and right images. The solid line represents a legal set of matches while
the dashed path is an illegal set of matches since they violate the uniqueness and ordering
constraints. A horizontal line segment denotes occlusion in the left image; a vertical line
segment denotes occlusion in the right image; a diagonal line segment to a point (i, 7)
denotes the matching of the left feature 7 with the right feature j.

The minimization of Equation (6) subject to these constraints can be solved by dy-
namic programming in O(NM), where N and M are the number of measurements in each
of the two epipolar lines, as outlined in Figure (2). Reconstruction of the optimum path
then proceeds as outlined in Figure (3) where C(i, 7) represents the cost of matching the
first 7 features in the left image with the first j features in the right image and c(z1 4, z2,;)
is the cost of matching the two features z;;, 2z, ; as shown in Equation (6).

Of course, this general solution can be further improved by realizing that there is a
practical limit to the disparity between two measurements. This is also true for human
stereo, the region of allowable disparity being referred to as Panum’s fusional area [22]. If
a measurement z;, is constrained to match only measurements z;, for which® (i; — Azx) <

9This assumes that the left image is 45 and therefore shifted to the right relative to the right image 4;.
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for (i=1;i< N;i++){ C(i,0) = i*Occlusion }
for (i=1;i< M;i++) { C(0,i) = i*Occlusion}
for(i=1;i< N;i++){
for(j=1;j< M;j++){

minl = C(i-1,j-1)+c(z1,,22,);

min2 = C(i-1,j)+0cclusion;

min3 = C(i,j-1)+0cclusion;

C(i,j) = cmin = min(minl,min2,min3);

if (minl==cmin) M(i,j) = 1;

if (min2==cmin) M(i,j) =

if (min3==cmin) M(i,j) =

H

o
w N

Figure 2: Pseudo-code describing how to calculate the optimum match.

p=N;
q=M;
while(p!=0 && q'=0){
switch(M(p,q)){
case 1:
p matches q
| S
break;
case 2:
p is unmatched
P~
break;
case 3:
q is unmatched
q--;
break;

H

Figure 3: Pseudo-code describing how to reconstruct the optimum match.
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19 < 17 then the time required by dynamic programming algorithm can be reduced to
linear complexity O(NAz).

3 Experimental Results - synthetic data

The preceding theoretical development is independent of the actual matching primitives
used in a particular implementation. For the experiments described below, the feature
primitives were the scalar intensity values of the individual pixels. There are several
advantages with working directly on the pixel intensities. First, problems associated
with feature extraction and/or with adaptively sized windows common to area-based
correlation methods are completely avoided. Second, the intensity based method provides
a dense disparity map, in contrast to the sparse maps of feature based approaches. This
also eliminates the need for sophisticated interpolation techniques.

Unless otherwise stated, all experiments described here were performed with scalar
measurement vectors representing the intensity values of the individual pixels, i.e. z;, =
I;,. The field of view of each camera, ¢, is assumed to be 7 and the measurements are
assumed to be corrupted with white noise of variance o? = 4. Finally, the probability of
detection Pp is assumed to be 0.99.

3.1 Random Dot Stereograms

Figure (5) shows the disparity map (with reference to the left image) obtained for a
random dot stereogram consisting of three rectangular regions one above the other. The
left random dot stereogram is shown in Figure (4) where approximately 50% of the points
are black and the rest white. The black pixel values in the disparity map indicate points in
the left image that were considered to be occluded in the right image. While the number
of correct matches is 95.4%, it is interesting to examine why the correct depth estimates
have not been found at every point on every line. In particular, since the RDS pair is
noise free, a perfect match is expected, so the right side of each rectangle should exhibit
a depth discontinuity that is aligned with neighboring scanlines. This is not the case in
practice. Close examination of this phenomenon revealed there are multiple global minimal!
Dynamic programming is guaranteed to find a global minima but not necessarily the same
one for each scanline. Hence, the misalignment of the vertical depth discontinuities.
Figure (6) illustrates how these global minima arise. Investigation of this phenomenon
revealed that there are many such alternative matchings. This problem is addressed next.

4 Cohesivity constraints

When more than one global minimum exists, i.e. multiple solutions paths exist, the
algorithm arbitrarily chooses one of these paths, resulting in small variations between
lines. The arbitrariness arises within the dynamic programming algorithm during the

12



Figure 4: Left view of a random dot stereogram.

Figure 5: Disparity map obtained with Pp = 0.99.
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Figure 6: Two alternative matches both of equal cost found in the neigborhood of a
discontinuity

test for the minimum cost path,

C(i,j) = min(C(i-1,j-1)+c(i,j),C(i-1,j)+0cclusion,C(i,j-1)+0cclusion),

i.e., in deciding whether to take the horizontal, vertical or diagonal path to (7,7). This
decision becomes arbitrary if more than one path is a minimum.

A more rational decision is to choose the “smoothest” path that minimizes the cost
function C(i, 7). There are many ways to define “smoothest”. Previous stereo algorithms
have incorporated a smoothing term into the cost function C(i, j) based on the difference
in disparity between neighboring pixels. This regularization term [30] penalizes large
disparity changes arguing that most surfaces are smooth. However, surfaces are not
smooth at depth discontinuities which are the most important features of depth maps.!°
Yuille et al [35], Geiger et al [15] and Belhumeur and Mumford [5] have addressed the
problem of smoothing with discontinuities within the framework of regularization. Here,
we propose an alternative method.

Regularization methods are usually employed to restrict the class of admissible solu-
tions. There are two approaches to finding z given data y, and Az =y:

1. The first is to find the z, from among the z that satisfy

Az -y [’<e (7)

10 Although not regularization in the mathematical sense, Ohta and Kanade [27] also incorporate an
inter-scanline continuity cost into their cost function.
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that minimizes || Pz ||?, a stabilizing functional.

2. The second method is to minimize
| Az —y [|> +) | Pz ||” (8)

where ) is a regularization term.

The second method has been widely used within the computer vision community.
However, determining the “optimum” value for A can be difficult. Since A controls the
degree of smoothing, then if ) is too large the resulting disparity map is too smooth while
if A is too small the disparity map is too noisy. The introduction of line processes have
significantly improved quality of results obtained from regularization. Nevertheless, there
is no guarantee that the solution to Equation (8) will minimize the original cost function
of Equation (7).

While Poggio at al [30] outlined method 1, the authors are unaware of any application
of this approach, perhaps because it is unclear how to efficiently compute such a mini-
mization. Solutions, via this method are guaranteed to be within e of the original cost
function. We now describe how solutions can be found via method 1 within the framework
of dynamic programming.

Instead of incorporating a smoothing term into the cost function C(3, j), a second op-
timization can be performed that selects from the set of solutions that minimize C(N, M),
that solution which contains the least number of discontinuities. Performing this mini-
mization after first finding all maximum likelihood solutions is very different from incor-
porating the discontinuity penalty into the original cost.

Smoothness can be defined in a number of ways. This paper considers definitions that
minimize

1. the number of horizontal discontinuities along a scanline or

2. the total number of horizontal and vertical discontinuities along and across scanlines
respectively.

Other definitions were examined, including
1. the number of vertical discontinuities across scanlines or
2. the number of horizontal discontinuities then the number of vertical discontinuities.
3. the number of vertical discontinuities then the number of horizontal discontinuities.

but were found to be inferior to the first two.

Minimizing the total number of horizontal discontinuities can be accomplished as part
of the dynamic programming algorithm without having to enumerate all the maximum
likelihood solutions, and is outlined below.
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Figure 7: Illustration representing the storage of the additional information D, (i, j),
Dh(iaj)a Dd(’L,])

4.1 Maximum likelihood, minimum horizontal discontinuities

In order to minimize the number of horizontal discontinuities, it is necessary to record
how the algorithm arrived at (4, 7). This is done using three matrices labelled D, (i, j),
Dy (i,3), Dy4(i,j), denoting whether (i,j) was arrived at from a horizontal, vertical or
diagonal path. The D(i, j) matrices record the total number of horizontal discontinuities
in the matching of the first ¢ points in the left image with the first j points in the right
image. This is depicted in Figure (7). The information stored in the D(i, j) matrices
can then be used to break any ties that occur in the calculation of C(i, 7). Algorithmi-
cally, this is accomplished as outlined in Figure (8). Notice that the M(i,j) matrix used
for reconstruction is no longer used. Instead, the optimum path can be reconstructed
directly from the D(i,j) matrices as outlined in Figure (9). Minimizing the number of
horizontal discontinuities has the advantage that each scanline of the image can be solved
independently and therefore in parallel.

The result of applying the maximum likelihood minimum horizontal (MLMH) discon-
tinuity algorithm to the random dot stereogram is shown in Figure (10). A significant
improvement is evident, with the percentage of correct matches increasing to 98.7%.
Once again, imperfect matching indicates the existence of multiple global minima, but
their number is far fewer.
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Occlusion = [ln( P, 1 )]

1=Pb, |(2n)is; |z
for (i=1;i< N;i++){ C(i,0) = i*Occlusion }
for (i=1;i< M;i++) { C(0,i) = i*Occlusion}
for(i=1;i< N;i++){
for(j=1;j< M;j++){
minl = C(i-1,j-1)+c(z1;,22;);
min2 = C(i-1,j)+0cclusion;
min3 = C(i,j-1)+0cclusion;
C(i,j) = cmin = min (minl,min2,min3);
if (minl==cmin)
Dy(i,j) = imin(Dy(i-1,j-1), Dp(i-1,j-1)+1,D,(i-1,j-1)+1);
else
Dy(i,j) = HUGE;
if (min2==cmin)
Dy(i,j) = imin(Dy4(i-1,3j)+1, Dp(i-1,3j),D,(i-1,j)+1);
else
Dy(i,j) = HUGE;
if (min3==cmin)
D,(i,j) = imin(Dy(i,j-1+1, Dp(i,j-D+1,D,(i,j-1));
else
D,(i,j) = HUGE;
H

Figure 8: Maximum likelihood, minimum horizontal discontinuities (MLMH) algorithm.
Note than min() returns the minimum value of its arguments while imin() returns the
index, (1, 2, or 3) to the minimum value. The matrices Dy, Dy, and D, record whether
the current position (7, j) was arrived at via a diagonal, horizontal or vertical move - see
text for details.

4.2 Maximum likelihood, minimum horizontal plus vertical dis-
continuities

Clearly, minimizing the total number of horizontal and vertical discontinuties will result in
a perfect solution to the random dot stereogram of Figure (4). Unfortunately, minimizing
vertical discontinuities between epipolar lines cannot be performed by dynamic program-
ming. Though it is conceptually straightforward to perform the vertical minimization,
i.e. find all global maxiumum likelihood solutions for each epipolar line and then choose
one solution per line to minimize the sum of the vertical dicontinutites between lines, in
practice it is relatively costly. Consequently, we have implemented an approximation to
this, still based on dynamic programming, that minimizes the local discontinuties between
adjacent epipolar lines

The MLMH+V algorithm can be computed in one of two ways. Either one can com-
pute the solution to the previous line and then minimize the number of vertical discon-
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/* Find start point and initialize costs d1, d2 and d3 together with the index counters e and f.
These are different for each of the three cases. */
p = NL;
q = NR;
switch(imin(D4[p,ql,Dy[p,ql,Dxlp,ql)){
case 1:
p matches q;
di1=0; d2=1; d3=1;
e=1; f=1;
break;
case 2:
P is unmatched;
di=1; d2=0; d3=1;
e=1; £=0;
break;
case 3:
q is unmatched;
di=1; d2=1; d3=0;
e=0; f=1;
break;
}
/*
* Now begin reconstruction.
*/
while(p> 0 && g> 0){
switch(imin(Dy4[(p-e),q-f]1+d1,D,[(p-e),q-f1+d2,D,[(p-e) ,q-f1+d3)){
case 1:
(p-e) matches (q-f);
di=0; d2=1; d3=1;
p=p-e; q=q-f;
e=1; f=1;
break;
case 2:
(p-e) is unmatched;
di=1; d2=0; d3=1;
p=p-e; q=q-f;
e=1; £=0;
break;
case 3:
(g-f) is unmatched;
di=1; d2=1; d3=0;
p=p-e; q=q-f;
e=0; f=1;
break;

1

Figure 9: Reconstructing the MLMH solution.
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Figure 10: Disparity map for maximum likelihood minimum discontinuity

tinuities between the current line with the previous line. Or a two pass scheme can be
employed, the first pass calculating the MLMH solution for initialization purposes. Dur-
ing the second pass, the each line is compared with the MLMH line above and below it
to determine the number of vertical discontinuities. This method can then be iterated
until convergence, though in practice, little if any improvement was noticable over just
two passes.

On a sequential machine, the first method is faster, taking approximately 20% more
time than the MLMH solution, while the second method takes twice as long. On synthetic
data such as the ellipsoid of Figure (32), the sequential bottom-to-top processing also
introduced some artifacts, e.g. extending vertical edges beyond their termination points,
although this did not appear to be the case for natural scenes. A parallel implementation
should avoid the first method since this is very sequential. However, the second method
is highly parallelizable.

Figure (11) outlines the MLMH+V algorithm. The function IsMatched(i) checks to
see if there is also a match in the previous line (or in the line above and line below in the two
pass method). Similarly, the functions IsLeftOcclusion(i) and IsRightOcclusion(i)
check whether there is an occlusion in the left or right image at the point :.

Figure (12) shows the MLMH+YV solution. It is clear that the solution is suboptimal,
since the vertical depth discontinuity is not perfectly straight. Nevertheless, there is still
a further improvement in the solution, the percentage accuracy increasing to 99.1%.
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for(i=1;i<NL;i++){
for(j=1;j<ML;j++){
/%
* Find minumum cost match
* (1) C(i-1,j-1) + c(i,j) or (ii) C(i-1,j) + Occlusion or (iii) C(i,j-1) + Oclussion
*/
costl = C(l—l,J—l) + C(Zl,i,ZQ’j);
cost2 = C(i-1,j) + Occlusion;
cost3 = C(i,j-1) + Occlusion;
cmin = min(costl, cost2, cost3);

/*
* In case of tie, e.g. costl==cost2, then choice of match is chosen
* to minimize the number of horizontal and vertical discontinuities
* The variable sum indicates whether a match occurred at (i-1,j-1)
*(i,j) or (i+1,j+1).
* The DV matrices count the number of horizontal and vertical
* discontinuities
*/
if (cmin==cost1){
vcost = IsMatched(i);
DV4(i,j)=min(DV4(i-1,j-1),DV,(i-1,j-1)+1, DV,(i-1,j-1)+1)+vcost;
}
else{
/* if not minimum then can’t use this path so set infinite */
DV4(i,j)=HUGE;
}

if (cmin==cost2){
vcost = IsLeftOcclusion(i);
DV,(i,j) = min(DV,4(i-1,j)+1, DV,(i-1,j), DV,(i-1,j))+vcost;
}
else{
DV, (i, j)=HUGE;
}

if (cmin==cost3) {
vcost = IsRightOcclusion(i);
DV, (i,j) = min(DV4(i,j-1)+1, DV,(i,j-1), DV,(i,j-1))+vcost;
}
else{
DV}, (i, j)=HUGE;
}

/* Finally record minimum cost and increment pointers */
C(i,j)=cmin;

H

Figure 11: Maximum likelihood, minimum horizontal plus vertical discontinuities,
(MLMH+YV), algorithm



Figure 12: RDS Solution using MLMH+V

5 Experiments with cohesivity constraint

In this section we demonstrate the performance of the ML, MLMH and MLMH+V al-
gorithms on a variety of natural and synthetic images. The disparity maps show the
disparities for the left image where, for display purposes, unmatched pixels, i.e. those
that are occluded in the right image, are assigned the disparity value of whichever of the
left or right neigboring pixel is furthest away.

Application of the MLMH and MLMH+V algorithms to natural scenes requires a
slight modification to the algorithms of Section (4). The problem is that the noise present
in real images may be sufficient to affect the maximum likelihood solutions so that only
a single global minimum exists. Other minima exist nearby that have costs close to
the minimum, but the noise has randomly biased one of the solutions to be a mini-
mum. This problem can be alleviated by altering the dynamic programming algorithms
to test for “approximate equality” rather than exact equality. Unfortunately, this in-
troduces an additional free parameter, €. In practice, we have found that setting € to
(0.5 Occlusion) < € < (0.9 Occlusion) works well and that the solutions are stable to
variations in €. The cost of solutions found using this modification are typically within
5% of the global minimum value. Since no ground truth information is known, only a
qualitative evaluation can be made.

5.1 The “Parking meter”

Figures (14 - 16) show the results of applying the algorithms to a stereo pair, the left
image of which is shown in Figure (13). The ML solution, Figure (14) has considerable
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streaking especially around the border of the car and around the narrow sign pole in
the middle right of the image. The MLMH solution of Figure (15) significantly reduces
this streaking and the MHMH+V solution almost eliminates it, much of the remaining
streaking being due to quantization error which is unavoidable unless subpixel features
are used. Especially noteworthy is the narrow sign pole in the middle right of Figure (16)
which illustrates the sharp depth discontinuities that can be obtained with the algorithm.

Figure 13: Left image of the “Parking meter” stereo pair, courtesy of T. Kanade and T.
Nakahara of CMU.

5.2 The Pentagon

Figure (17) is the left image of the “Pentagon” stereogram. Figures (18 - 20) shows the
resulting disparity maps for the ML, MLMH and MLMH+V algorithms. Surprisingly,
there is little or no improvement between the three algorithms. However, significant detail
is obtained, as is evident from the overpasses and freeways in the upper right corner of
the disparity maps. These disparity maps are comparable to results of Geiger et al [15]
and Cochran and Medioni [9].

5.3 The “Shrub” and image normalization

Figures (22 - 24) show the results of applying the algorithms to a stereo pair called
“Shrub”, the left image of which is shown in Figure (21). Although coarse depth
information is obtained, the disparity maps are poor with many artifacts present. Inves-
tigation of this problem revealed that the left and right image pair violated the Normal
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Figure 14: ML disparity map for the “Parking meter”.

Figure 15: MLMH disparity map for the “Parking meter”.
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Figure 16: MLMH+V disparity map for the “Parking meter”.

Figure 17: The Pentagon
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Figure 18: Maximum likelihood disparity map for the Pentagon.

Figure 19: MLMH disparity map for the Pentagon.
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Figure 20: The MLMH+V disparity map for the Pentagon.

Figure 21: Left image of the “Shrub” stereo pair, courtesy of T. Kanade and T. Nakahara
of CMU.



Figure 22: ML disparity map for the “Shrub”.

Figure 23: MLMH disparity map for the “Shrub”..
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Figure 24: MLMH+V disparity map for the “Shrub”.

distribution assumption used to compare corresponding intensity values. In particular,
careful examination of the intensity values at corresponding points revealed significant
non-zero biases. It is suspected that between the time of taking the left and right images,
illumination conditions changed; perhaps a cloud obscured the sun. It was decided to
model this variation in illumination by constant additive and multiplicative factors,!! i.e.

Il(x7y) = AIr(xay) + B (9)

This relationship includes a constant multiplicative term, A, together with the more
common additive term, B. The commonly used Laplacian operator would remove the
additive bias, B, but not the multiplicative term. In a seperate study of the validity
of the constant image brightness assumption for the JISCT stereo database [7, 12], we
found that in almost one in three images the assumption was invalid. Moreover, a simple
additive bias did not adequately model the relationship between corresponding left and
right intensities. The model of Equation (9) was found to be sufficient though a nonlinear
model of the form

Il(‘rﬂy) = AITC('rﬂy) + B

1s most accurate.

" Gennert [16] showed that the intensities of two corresponding points are approximately related by a
spatially varying multiplicative factor. Gennert found that an additive term was unnecessary. However,
Gennert’s multiplicative relationship models how the intensities of two corresponding points varies due to
surface orientation and reflectance models. We have assumed this relationship to be a Normal distribution.
Rather, our constant additive and multiplicative constants attempt to model changes in illumination
conditions and differences in camera responses.
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Figure 25: Left versus Right plot of ten percentile points from intensity histograms.

If the number of occluded points is small compared to the overall number of pixels, then
the intensity histograms for the left and right images are approximately the same except
for the fixed offset B and the scaling term A. Estimation of the constants A and B was
performed by first calculating the intensity histograms for both the left and right image.
Then plotting the ten percentile points as depicted in Figure (25). A linear regression
can then be performed on these points, the slope and intercept providing estimates for
A and B respectively. In practice, we performed piecewise linear approximation between
the ten percentile points.

If the ML, MLMH and MLMH+YV algorithms are applied to the normalized images
significantly better results are obtained, as is evident from Figures (26-28). Again, streak-
ing is evident, especially on the surface of the brick wall. The MLMH algorithm reduces
this streaking and a further reduction is obtained from the MLMH+V algorithm. How-
ever, a small number of artifacts is still present on the brick wall and on the horizontal
edges of the sign.

5.4 Face

Figures (29) and (30) show the left and right views of the bust of a face. This pair of
images was created by rotating the bust through 10°. Figure (31) shows the disparity
map obtained using the MLMH+V algorithm. Qualitatively good results are obtained.
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Figure 26: ML disparity map for the “Shrub” after normalization.

Figure 27: MLMH disparity map for the “Shrub” after normalization.
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Figure 28: MLMH+V disparity map for the “Shrub” after normalization.

Figure 29: Left image of the “Face”, courtesy of J. Tajima and S. Sakamoto of NEC.
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Figure 30: Right image of the “Face”, courtesy of J. Tajima and S. Sakamoto of NEC.

Figure 31: MLMH+V disparity map for the “Face”.
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5.5 Ellipsoid - Shape from disparate shading

Figure (32) and Figure (33) show the left and right images of an ellipsoid. The ellipsoid
has been synthetically generated such that no zero crossings occur on its surface[8]. As
such, edge based stereo algorithms are incapable of estimating depth variations over the
ellipsoid’s surface. Bulthoff [8] has called this class of images “intensity-based stereo”.
Figure (34) shows the result of applying the MLMH+V algorithm to the stereo pair. Note
that a significant amount of 3D structure is recovered despite the absence of edges.

Bulthoff [8] has shown that humans are able to determine depth in the absence of edges
and has therefore conjectured that there may be a seperate mechanism for intensity-based
stereo. The fact that humans are better able to estimate depth when edges are present is
taken as evidence that an edge-based stereo mechanism must also be present. However,
the performance of intensity-based stereo algorithm described here is also improved when
texture is added to the ellipsoid, even though edges are not explicitly extracted. Instead,
the edges or texture simply help to reduce the ambiguity present when matching the two
intensity signals. Could a single intensity-based mechanism account for both edge-based
and intensity-based human performance?

Figure 32: Left image of the “Ellipsoid”.

6 The Modified Cost Function for N-Cameras

The previous section demonstrated how the cohesivity constraints defined in Section (4)
can be applied to resolve ambiguous correspondences. An alternative to imposing cohe-
sivity constraints to resolve ambiguous correspondences is to use more than two cameras.
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Figure 33: Right image of the “Ellipsoid”.

Figure 34: MLMH+V disparity map for the “Ellipsoid”.
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Here, we extend the two camera maximum likelihood to N-cameras. The N-camera stereo
algorithm determines the “best” set of correspondences between a given pair of cameras,
referred to as the principal cameras. Knowledge of the relative positions of the cameras
allows the 3D point hypothesized by an assumed correspondence of two features in the
principal pair to be projected onto the image plane of the remaining N —2 cameras. These
N — 2 points are then used to verify proposed matches.

Let the two principal cameras be denoted by s = {1, N} and the set of intermediate
cameras by s = {2,..., N —1}. The two principal cameras may also be referred to as
the left and right cameras though, in practice, the pair may have an arbitrary relative
geometry. The condition that measurement z; from camera 1, (the left camera) and
measurement z;, from camera N, (the right camera), originate from the same location,
Xk, in space, i.e. that z; and z;, correspond to each other is denoted by Z;, ;.
The likelihood that the measurement pair Z;, ;. originated from the same point X, is
denoted by A(Z;, ...y | Xi) and is defined as

Az o | %) = ((N— 1);1 - PD)>‘M y

[Ppp(zi, | Xi) X Ppp(Ziy | Xx)X

N-1 o ds
1:[ (PDp(Zis‘ch))li(ss (1 ¢PD>

is an indicator variable that is unity if measurement z;, in the left image or

1,IN

1=0iyiy

(10)

where ;,;,

z;, in the right image, is not assigned a corresponding point, i.e. is occluded. Otherwise
diyiy = 0 indicates that measurement z;, corresponds to z;,. The indicator variable J; is
unity if the 3D point hypothesized by the match Z

otherwise. Note that the features {z;,,...,z;,_,} are determined by projecting the 3D

N

ir,iy 1s occluded in camera s, and zero
point hypothesized by the correspondence of z;, and z;, onto the image planes of each of
the N — 2 cameras. This is straightforward provided the relative position of the cameras
is known (see [33] for details).

Now that we have established the cost of the individual pairings Z;, ;,
to determine the total cost of all pairs. Let v denote a feasible pairing of all measurements
and let I' be the set of all feasible partitions, i.e. I' = {v}. Then we wish to find the
pairings (or partition), -y, that maximizes L(vy) where the likelihood L(7y) of a partition is
defined as

L(y) =p(Z1,Zn | 7) = 'H A Ziy..in | X) (11)

it is necessary

The maximization of L(7) is equivalent to
min J(7y) = min [~ In(L(7))] (12)
vyel' yel’

which leads to

P2
minJ(y) = min > &,yln < b? T )
’yer 761—‘ Zil _____ iNE’)’ (N - 1)(1 - PD) ‘ (27r)dS ‘5
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assuming that the covariances, S;,, are equal.

The first term of the outer summation of Equation (13) is the cost associated with
declaring a feature occluded. The other term is the cost of matching two features. This
cost is the sum of the weighted squared errors of the left and right features z;, and z;,
plus the sum over the intermediate views of either the squared error cost or the occlusion
cost depending on whether the feature is visible or not in an intermediate view.

Equation (13) must be minimized subject to the common constraints of uniqueness
and ordering (monotonicity). While straightforward to perform using dynamic program-
ming, satisfying the uniqueness constraints for all of the features in all N views would be
prohibitive. Instead, we choose to apply the uniqueness constraint only to the left and
right image features, i.e. it is allowable for a feature in an intermediate view to support
(match) more than one pair of correspondences between features in the left and right
images. Equation (13) can then be written as

2
min J(f)/) = min Z 5i1,’iN In ( PD¢ 1)
~el' vyel' Ziy in€ (N — 1)(1 — PD) | (27T)ds |§

1
(1 = 8iy, i) {Z(zil 2 )'S M (2, — 7sy) +

b O rermire=r) | I

Comparing Equation (14) with (6), we see that for N = 2, the costs are identical. For,
N > 2, i.e. there are intermediate views, the cost of matching is appended by the last
term in Equation (14). This min term provides support for the match, based on the first

argument or returns the cost of occlusion if the feature is assumed to be occluded in the
intermediate view.

7 N-Camera Experimental Results

The experimental results described here determine the correspondence between the two
principal images by minimization of Equation (14) together with the cohesivity constraint
of minimizing the sum of the horizontal and vertical discontinuities in the resulting dispar-
ity map, as described in Section (4). Once again, the measurements are individual pixel
intensities with an assumed standard deviation of o = 2.0. A value of Pp = 0.9 is used
throughout. Two image sequences are examined; a horizontal sequence and a horizontal
plus vertical sequence. In order to provide subpixel estimates of the disparity map, all
images were interpolated by 5 times prior to stereo matching. The resulting desparity
map was then decimated by 5 times to produce the results described next. Finally, all
disparity maps have been histogram equalized for visualization.
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7.1 Horizontal Sequence

Figure (35) shows the first and last frames of a horizontal motion sequence. Figure (36)

Figure 35: Leftmost and rightmost views of the shrub sequence. Images are courtesy of
T. Kanade and E. Kawamura of CMU.

shows the disparity map obtained from the original maximum likelihood algorithm. Notice
that the disparity map contains many spurious occluded points (represented by black
pixels) and there is significant systematic error on the rear wall in the vicinity of the (ap-
proximately uniform intensity) mortar stripes. Nevertheless, significant detail is apparent;
notice, for example, the small shrub in the bottom right.

Figure (37) shows the disparity map obtained with one additional image located at the
midpoint between the stereo pair. The number of spurious “occlusions” is significantly
reduced and the stripe errors markedly reduced.

Figure (38) shows the resulting disparity map for 7 images each equally spaced between
camera 1 and N. It is clear that there is a significant improvement in the quality of the
disparity map of Figure (38). Many of the spurious “occlusions” and much of the striping
error have been eliminated. However, some small “block” artifacting is apparent due to
the horizontal and vertical continuity constraints imposed by the algorithm. Nevertheless,
Figure (38) has far fewer correspondence errors than the original two frame stereo solution
of Figure (36).

For comparison puposes, Figure (39) shows the results of applying the algorithm as-
suming no occlusions in the intermediate views, i.e. the min term of Equation (14) is
replaced by its first argument. A significant increase in the number of spurious occlusions
is apparent. This illustrates the importance of the modelling the occlusion process in all
views, not just the principal pair.
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Figure 36: Disparity map obtained from leftmost and rightmost views.

Figure 37: Disparity map obtained with three images.
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Figure 38: Disparity map obtained with seven images.

Figure 39: Disparity map obtained with six images with no modelling of the intermediate
occlusion process.
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7.2 Horizontal and Vertical Sequence

Figure (40) show the left, right and uppermost images of a multiframe sequence. Figure (41)

Figure 40: Left, right and uppermost images of the “Castle” sequence. (Images courtesy
of T. Kanade and E. Kawamura of CMU.)

shows the disparity map obtained using only the center and rightmost images. Good depth
detail is apparent but once again, there are spurious occlusion points. Although the fine
perimeter wall structures appear to have been resolved close inspection revealed that
this sometimes corresponded to the shadow region beside the wall and not to the wall
itself, i.e. false correspondences were made. The structure at the very top of the image
is poorly resolved and false correspondences are present around the small roof structure
on the right. The small roof structure in the upper left of the image is barely resolved.
The major roof structures are correctly discriminated although the sloping surfaces have
been given a frontal planar orientation because of the implicit bias associated with the
algorithm. This bias could be removed in a similar manner to Belhemeur [4].

Figure (42) shows the disparity map obtained using a trinocular configuration consist-
ing of the three images of Figure (40). There is a noticable reduction in the number of
spurious occlusion points together with a reduction in correspondence errors as expected.
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Figure 41: Disparity map for center and rightmost stereo pair. (The left image is his-
togram equalized while the right image has been linearly stretched from 110 to 170, the
remaining intensity values being clipped to either 0 of 255).

Figure 42: Disparity map for center, upper and rightmost image triple. (The left image
is histogram equalized while the right image has been linearly stretched from 110 to 170,
the remaining intensity values being clipped to either 0 of 255).
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The small roof structure in the upper left of the image is beginning to be resolved but
there are correspondence errors still in the small structure located in the middle right
portion of the image.

Figure (43) shows the disparity map obtained using all 13 frames. Occlusions are now

Figure 43: Disparity map obtained using all 13 images. (The left image is histogram
equalized while the right image has been linearly stretched from 110 to 170, the remaining
intensity values being clipped to either 0 of 255).

almost all clustered at significant changes in surface height; most spurious occlusions have
been removed. The structure at the top of the image is now sharply resolved. The small
building to the right has now been correctly resolved and the stairwell immediately beside
it is very well defined. The small roof structure in the upper left is also correctly detected.
There are some height variations on the two primary roof structures; these artifacts are
mostly likely due to the algorithms implicit bias for frontal planar surfaces. However, the
main depth discontinuities are very sharply defined.

It is currently unclear whether the remaining correspondence errors are due to vio-
lations of the normal assumption in the vicinity of these errors which are not corrected
for by the normalization procedure or whether perhaps small errors in the camera posi-
tions are causing the verification points in the N — 2 intermediate frames to not be true
corresponding points. This needs further investigation.

8 Conclusion

Determining the correspondence between two stereo images was formulated as a Bayesian
sensor fusion problem. A local cost function was derived that consists of (1) a normalized
squared error term that represents the cost of matching two features and (2) a (fixed)
penalty for an unmatched measurement that is a function of the probability of occlusion.
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These two terms are common to other stereo algorithms, but the additional smoothing
term based on disparity differences between neighboring pixels is avoided. Instead, unique-
ness and ordering constraints, imposed via a dynamic programming algorithm constrain
the solution to be physically sensible.

The dynamic programming algorithm has complexity O(N M) which reduces to O(N)
if a disparity limit is set. The algorithm is fast, especially since no feature extraction or
adaptive windowing ir required. Typical times for a 512x512 images with a disparity limit
of 25 pixels running on a MIPS R3000 processor at 35MHz are 30s, 40s and 50s for the
ML, MLMH and MLMH+V algorithms respectively. This is between 30 [15] and 1500 [9]
times faster than comparable algorithms.

Experimental results were first presented for random dot stereograms. These revealed
that multiple global minima exist. The multiple global minima cause small local differ-
ences between neighboring scanlines. In order to choose from among these global minima,
two cohesivity constraints were investigated based on minimizing the total number of hori-
zontal (MLMH) or horizontal-plus-vertical discontinuities (MLMH+V). These constraints
were imposed by modifications to the dynamic programming algorithm rather than by
classical regularization methods. This alternative approach is interesting and probably
warrants further work. Experimental results indicate that the maximum likelihood mini-
mum horizontal discontinuities (MLMH) also suffers from multiple global minima, though
far fewer than the maximum likelihood algorithm alone. The MLMH+V algorithm im-
proves on the performance of the MLMH algorithm even though an approximate subop-
timal algorithm is employed for computational reasons. Clearly, design of an efficient,
optimal algorithm for determining the MLMH~+V solution is needed. Qualitatively, best
disparity maps were obtained using the MLMH+V algorithm, though very acceptable
results are provided by the MLMH algorithm.

A variety of stereo images were examined. The pair denoted “Shrub” revealed that the
algorithm was sensitive to additive and multiplicative intensity offsets. A normalization
procedure based on comparing the ten percentile points of the histograms of the two
images provided a straighforward way of automatically detecting and eliminating this
condition.

Using the scalar intensity values of the individual pixels as a measurement vector
has the advantages of eliminating any feature extraction stage and/or complex adaptive
windowing. The algorithm can be easily extended to incorporate multiple attributes into
the measurement vector, e.g. intensity, color, edge, texture, provided all the elements of
the vector satisfy the Normal assumption.

The maximum likelihood stereo algorithm was then generalized to N cameras. The
cost function explicitly models occlusion in the principal (left and right) images together
with possible occlusions in any of the intermediate views. Once again, the global cost
function is efficiently minimized through dynamic programming which enforces ordering
(monotonicity) and uniqueness constraints. However, while it is guaranteed that a feature
in the left image will match no more than a single feature in the right image, the implemen-
tation does not prevent features in intermediate views from matching multiple features
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in the left and right cameras. We do not believe this is a significant problem. However,
if necessary, it could be corrected by a more elaborate and consequently computationally
more expensive dynamic programming algorithm.

The experimental results clearly show a significant improvement in matching accuracy
as more intermediate views are used to verify hypothesized matches. Very good detail is
extracted from the images and the number of spurious occlusion points is considerably re-
duced. Comparison with solutions obtained with no modelling of intermediate occlusions
clearly demonstrate the benefits and importance of the occlusion model.

There are several avenues for future work, including (1) the need to find an efficient
and optimum solution to the MLMH+V method, (2) investigation of the validity of the
constraints and assumptions. In particular, while it is common to assume uniqueness,
there is evidence that human stereopsis does not impose such a condition, epscially in
the perception of transparent surfaces[18, 19]. It would be challenging to eliminate this
constraints. For the N-camera case, we assumed that the position of the N cameras is
precisely known in order to determine the points in the N — 2 intermediate frames. This
is a very significant assumption, since if violated, a correctly hypothesized correspondence
between two feature in the left and right images could project to incorrect positions on
the image planes of the intermediate cameras. Since very significant errors might result,
a sensitivity analysis should be performed. This may explain some of the correspondence
errors present in the 13 frame solution.

Since the computation and memory costs scale linearly with the number of views, it
is desirable to minimize the correspondence error with the fewest number of additional
views. An obvious question then is where successive views should be taken. This is
a difficult question with interesting connections to sensing strategies in path planning,
robot map making and vision [13]. A corollary to this is whether there is a minimum
distance separation. Kanade et al have rightly pointed out that small separations reduce
the search space over which it is necessary to look for a match. However, it is unclear
whether closely spaced intermediate views have less disambiguation than a more separated
sequence. Moreover, in the dynamic programming approach presented here, the search
space is determined only by the two principal views so the location of intermediate views
should not be constrained by search space considerations.
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