
2/23/17 

1 



2/23/17 

2 

Concepts for Graph Cuts 
•  Segmentation by estimating probability that each 

pixel is foreground (fg) or background (bg). 
–  User input: w/ probability 1 pixels are fg or bg. 
–  These provides information about color of pixel. 

•  Using histograms to estimate probabilities. 

–  Maximizing probabilities by sum of weights. 
–  Pairwise Probabilities 

•  Maximizing probabilities using graph cuts. 

Graph Cuts for Segmentation 
•  Seek division of image into foreground and 

background. 
•  Turn image into graph, each pixel connected to 

neighbors and special source (foreground) and sink 
(background nodes). 

•  A cut of the graph divides it into foreground and 
background. 

•  Edge weights determine: 
–  Is a pixel likely to be foreground or background? 
–  Is a pixel likely to have same label as neighbors? 



2/23/17 

3 

Graph Source 

Sink Source and Sink connect to all 
nodes; not all edges are shown. 

Cut Source 

Sink 

Remove edges so there is no path from source to sink. 
Weight of cut is the sum of the weight of edges removed. 
.  



2/23/17 

4 

Min Cut 

•  Min Cut is the cut with the lowest weight 
•  Well studied problem with many 

practical applications. 

Min Cut for Interactive 
Segmentation 

•  Assume user has specified some pixels 
as foreground/background. 

•  Identify a cut as a segmentation: 
– Pixels connected to source are foreground. 
– Pixels connected to sink are background. 
– The weight of edges in the cut should 

reflect knowledge of foreground and 
background. 



2/23/17 

5 

Hard constraints 

•  Let S be source, T be sink, w(p,q) is 
weight of edge between nodes p & q. 

•  If pixel p definitely is foreground, make: 
  w(p,S) very big, w(p,T) = 0. 

– Edge from p to S (E(p,S)) will never be cut. 
– E(q,T) must therefore always be cut so 

there’s no path from S to T 

Data Term 
•  Let F be set of pixels known to be foreground.  Let B 

be background pixels. 
•  What about                       ? 
•  Compare properties of p to foreground and 

background pixels. 

BFp ∪∉



2/23/17 

6 

Color Histogram Comparison 
1.  Compute color histograms for foreground and 

background, hf, hb 

2.  Smooth histograms by adding a constant to each 
bin. 

3.  Normalize histograms so they sum to 1 (like 
probabilities). 

4.  Find Pr(p|Foreground), Pr(p|Background) by finding 
bin p belongs to, and looking up values in 
normalized histograms. 

5.  w(p,S) = -log(Pr(p|Background)) 
6.  w(p,T) = -log(Pr(p|Foreground)) 

Histograms with Graph Cut 

•  Why –log?   
– We are adding weights.  We multiply 

probabilities, so add logs.   
– We maximize probabilities, so minimize –

log. 
•  Example: if p has a color that rarely appears 

in foreground, edge to source will have low 
weight. 

•  Why smooth?  We only have a small sample.  



2/23/17 

7 

Graph Cut with Data Term 

•  Suppose we compute mincut with just 
these edges to source and sink. 

•  Segmentation respects user input. 
•  Other pixels classified based on 

whether they resemble foreground or 
background. 

•  Results can be quite spotty. 

Smoothness term 

•  If a pixel, p, is foreground, its neighbor, 
q, is likely to be foreground. 
– Especially if p and q are similar. 

– This is gradient, normalized in ad-hoc way. 
– Note, gradient is taken between pixels, not 

on one pixel. 

( )
( ) ( )( )

2

2

2, σ

qIpI

eqpw
−

−

=



2/23/17 

8 

Results 

User Input No Edge Weights 
Just Data Term 

Full segmentation 


