
Problem Set 4 
CMSC 426 

Assigned Tuesday, March 14, Due Tuesday, March 28 
 
 

1. Suppose we have the two images, H and I, given below: 
 
12 11 10 11 12 13 
11 10 9 10 11 12 
10 9 8 9 10 11 
9 8 7 8 9 10 
8 7 6 7 8 9 
7 6 5 6 7 8 
              H 
 
13 12 11 10 11 12 
12 11 10 9c 10 11 
11 10 9b 8 9a 10 
10 9 8 7 8 9 
9 8 7 6 7 8 
8 7 6 5 6 7 
                 I 
 

a. 2 points. Consider the pixel in image I that has an intensity of 9 and is 
marked with an a.  What is the gradient at that pixel?  Let’s assume that 
the positive y direction is up. 

 
b. 2 points. What is the change in intensity at that pixel? 

 
c. 2 points. Using the optical flow equation: 0  , write an 

equation that describes the motion of that pixel by the vector [u,v].   
   

d. 8 points. Repeat these steps for the pixel with intensity 9 that is marked b.  
Derive an equation for motion based on that pixel.  Combine these two 
equations and solve for the motion of the pixels, assuming they are 
undergoing the same motion. 

 
e. 6 points. Suppose you do the same thing for the pixel marked c.  Does this 

fit the result you obtained in the last problem?  If not, can you explain why 
not? 

 
2. Suppose we have an image with intensities described by the equation: H(x,y) = 10 

+ (x-12)2 + (y-10)2.  The camera moves a little, and we get a new image described 
by the equation: I(x,y) = 10 + (x-13)2 + (y-10)2.   

a. 4 points. What is the gradient of image I at the location (15, 13)? 



 
b. 4 points. What is the change in intensity between images H and I at the 

location (15,13)? 
 

c. 4 points. Using the optical flow equation: 0  , we want 
to determine where in image I we will find the point that was located at 
(15,13) in image H.  Give a linear equation that tells us a line where that 
location might be. 

 
d. 8 points. Go through the same steps and find a corresponding linear 

equation at the location (15,10).  Using these two equations, solve for the 
motion. 

 
e. Challenge Problem 5 points: Determine what the actual motion of the 

image is.  Show that this is different from what you computed in part (d).  
Then show that if the motion had been in the same direction, but very 
small, solving for it in this way would have produced (almost) exactly the 
right answer. 
 

3. 60 points.  Corner Detection.  You should implement the corner detector that we 
discussed in class.  Recall that to do this we perform the following steps.  First, 
for every point in the image, we form a matrix, C, which is based on the image 
gradients in the neighborhood of this point.  You should compute image gradients 
in the same way that you did for edge detection, smoothing the image first.  I 
suggest that you reuse the routines image_gradient and smooth_image from the 
edge detection problem set.  Use a 5x5 neighborhood around each point to form 
C.  Then use singular value decomposition, with the matlab routine svd, to find 
the singular values of C. (Or you can use the matlab function eig to find the 
eigenvalues of C.  In this case it will amount to the same thing).  This is 
summarized in the equations: 

 
 
 
 

The measure of cornerness for a point will be the smallest of the two singular 
values, λ2.  Since you have a measure of cornerness for every pixel in the image, 
you should output a matrix that is the same size as the input image, and that 
contains the cornerness for each pixel.  So your complete program will have the 
form: M = image_cornerness(I,sigma).  Here I is the input image, and sigma is a 
value indicating how much to smooth the image before computing the image 
gradient.  I have given you a function display_best_corners, which will take as 
input an image, and the output of your cornerness routine, and will output an 
image that shows where the corners are.  When this routine finds a good corner, it 
eliminates from consideration nearby points that are slightly less good, so it 
doesn’t exactly find the locations in C that have the highest values. 
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We can use this, on the swan image for example, with the calls: 
 
C = image_cornerness(swanbw, 2); 
imshow(display_best_corners(swanbw, C, 20)); 
 
This will display the 20 best corners in the swan image.  A link to a picture of the 
result is in swancorners.jpg.   
 
Let’s step through a simpler example of how this how program will work.  
Suppose we have an image with a corner: 
 
I = 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0    10    10    10    10 
     0     0     0    10    10    10    10 
     0     0     0    10    10    10    10 
     0     0     0    10    10    10    10 
 
To keep things simpler, I’ll do no smoothing (so I call my routine with sigma = 
0).  Computing the x and y components of the image gradient, I get: 
 
Ix = 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     5     5     0     0     0 
     0     0     5     5     0     0     0 
     0     0     5     5     0     0     0 
     0     0     5     5     0     0     0 
 
Iy = 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     5     5     5     5 
     0     0     0     5     5     5     5 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0 
 
Using these to build a C matrix for the point (4,4), we get the matrix: 
 
C =  
   150    25 
    25   150 



 
Why these numbers?  Below, I show all the gradients, as pairs (Ix,Iy).  In red are 
the gradients in a 5x5 neighborhood around the pixel at (4,4).  If we square all the 
Ix values we get 150, since there are six such values.  Similarly for squaring Iy.  
Only pixel (4,4) gives a non-zero value, 25, for Ix*Iy though. 
 
     0,0     0,0     0,0     0,0     0,0     0,0     0,0 
     0,0     0,0     0,0     0,0     0,0     0,0     0,0 
     0,0     0,0     0,0     0,5     0,5     0,5     0,5 
     0,0     0,0     5,0     5,5     0,5     0,5     0,5 
     0,0     0,0     5,0     5,0     0,0     0,0     0,0 
     0,0     0,0     5,0     5,0     0,0     0,0     0,0 
     0,0     0,0     5,0     5,0     0,0     0,0     0,0 
 
 
We will have to do this for every point.  Performing svd on the matrix C, we get: 
 
svd(C) 
 
ans = 
  175.0000 
  125.0000 
 
So the cornerness of this point is 125, which is pretty high.  Looking at the 
cornerness of all the points, we get: 
 
         0         0         0         0         0         0         0 
         0   25.0000   39.6447   44.0983   45.9431   21.4986         0 
         0   39.6447   75.0000   89.6447   94.0983   45.9431         0 
         0   44.0983   89.6447  125.0000  139.6447   70.1854         0 
         0   45.9431   94.0983  139.6447  175.0000   94.0983         0 
         0   21.4986   45.9431   70.1854   94.0983   75.0000         0 
         0         0         0         0         0         0         0 
 
Notice that the point with the highest cornerness is located at (5,5), even though 
intuitively this does not seem to be exactly where the corner is.  This is because a 
5x5 region centered at (5,5) has the greatest diversity of gradients, since it has all 
the non-zero gradients we got in the neighborhood around (4,4), plus some new 
ones. 
 
Hand in your results for the swan image, along with your code. 
 
4. Challenge Problem 10 points: What happens to the corners if part of an image 
is in a shadow?  To simulate this, take an image and reduce the intensities in one 
part of the image by a factor of ½.  How can this influence which corners in the 
image are the most salient (ie, have the highest cornerness)? Can you think of a 



way to change the corner detector so that its decision about which are the 
strongest corners will not be affected by shadows?  Implement your strategy, and 
show what it does. 
 
 


