
Problem	Set	7:	Deep	Learning	
Due	May	9,	2017	

	
You	may	run	into	problems	installing	MatConvNet	on	your	laptop,	so	please	start	this	
assignment	early	so	the	TA	can	help	you	if	you	have	trouble.	
	
There	will	be	equal	emphasis	on	the	write-up	and	the	code	for	this	assignment.	Please	read	
through	the	assignment	carefully	and	address	all	questions.	
	
First,	you	need	to	download	the	data.	We	will	use	a	subset	of	the	CelebA	dataset,	which	
consists	of	face	images	labeled	with	40	binary	attributes	(blond	hair,	female,	etc.).	The	data	
can	be	downloaded	from	www.cs.umd.edu/~djacobs/CMSC426/Spring17/CelebA.zip.	The	
dataset	contains	20,000	64x64	images,	10,000	for	training,	and	5,000	each	for	validation	
and	testing.		CelebA/images	contains	the	data,	and	CelebA/Files	contains	the	train,	
validation,	and	test	split	files.	
	
1. Download	and	install	MatConvNet.	Run	MNIST.	Classify	your	own	hand-written	
digit.	

a. Download	and	install	MatConvNet	from	http://www.vlfeat.org/matconvnet.	If	you	
have	a	Windows	machine,	you	may	run	into	issues,	so	PLEASE	START	EARLY	so	the	
TA	can	help	you.	

b. Once	you	have	installed	MatConvNet,	you	should	be	able	to	run	the	MNIST	example	
provided	in	<MatConvNetDir>/examples/mnist/cnn_mnist.m.	Run	this	example.	It	
trains	a	network	for	20	epochs	(complete	runs	through	the	training	dataset).	Notice	
the	plots	created	after	each	epoch.	The	objective	function,	top	1	error,	and	top	5	
error	are	plotted.	Since	there	are	10	digits,	cnn_mnist.m	performs	10-way	
classification.	
MNIST	is	a	dataset	of	handwritten	digits	(0-9).		If	you’re	interested	in	the	dataset,	
you	can	find	more	information	here:	http://yann.lecun.com/exdb/mnist.		

c. Your	trained	net	is	now	in	<MatConvNetDir>/data/mnist-baseline-simplenn/net-
epoch-20.mat.	To	test	your	trained	network,	write	three	different	hand-written	
digits	on	a	piece	of	paper.	Take	a	picture	of	each	digit,	and	save	them.	Convert	the	
images	to	grayscale,	resize	them	to	28x28,	and	convert	them	to	single	type.		Also	
subtract	the	mean	from	them.	
im = imread(‘nine.jpg’);
im = rgb2gray(im);
im = single(im);
im = imresize(im, [28 28]);
im = im – mean(im(:));

	
Load	your	trained	network,	and	remove	the	final	softmax	layer.			
To	load	the	network:	trainedNet = load(‘data/mnist-baseline-
simplenn/net-epoch-20.mat’);	

After	loading	the	network, trainedNet.net	contains	the	network	weights.	
trainedNet.net.layers(end)	contains	the	softmax	layer.	So,	to	remove	the	
softmax	layer	simply	delete	the	last	layer:	trainedNet.net.layers(end) =
[];
%to get probabilities
trainedNet.net.layers{end+1} = struct('name', 'prob',
'type', 'softmax') ;
res = vlsimplenn(trainedNet.net, im);
res(end).x contains	the	score	for	each	class	with	res(end).x(1)	
corresponding	to	0	and	res(end).x(10)	corresponding	to	9.	The	predicted	class	
will	be	the	one	with	the	largest	value.	For	my	image	(nine.jpg),	res(end).x(10)	
has	the	largest	value.		
Don’t	worry	if	you	do	not	get	the	correct	classes	for	your	digits.	Think	about	why	
this	may	be	happening.	(Hint:	look	at	the	MNIST	data	
(http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf),	and	compare	it	with	your	
hand-written	digits).	Provide	your	images	and	results	in	your	write-up.	Discuss	any	
unexpected	results.	
	

2. Run	an	SVM	classifier	for	gender	recognition	on	CelebA	dataset.	
Before	using	a	deep	convolutional	network	as	in	question	3,	we	will	first	try	to	tackle	
the	task	of	gender	recognition	in	a	more	conventional	way.	Specifically,	we	will	extract	
some	hand-designed	features	for	each	image	and	then	train	a	binary	classifier	using	
these	features.		
Image	features	are	some	numerical	representations	of	an	image,	which	encode	useful	
information	for	statistical	analysis.	Here	we	use	a	simple	hand-designed	feature,	Local	
Binary	Pattern	(LBP)	feature,	to	represent	each	image.	LBP	can	capture	the	texture	
information	in	an	image	and	is	widely	used	as	a	face	descriptor.	To	classify	the	LBP	
features	into	different	classes,	we	use	the	well-known	Support	Vector	Machine	(SVM)	
classifier.	Similar	to	the	linear	classifiers	introduced	in	class,	SVM	tries	to	find	a	line	(or	
hyperplane)	that	separates	the	data	samples	from	different	classes.		
a. Data	preparation.	Write	a	function	with	signature	

[X_train, Y_train, X_val, Y_val, X_test, Y_test] =
load_data()

for	loading	train,	validation,	and	test	files	from	Data/CelebA/Files. X_train,
X_val, X_test	contain	image	data	from	training,	validation	and	testing	set,	
respectively.	Y_train, Y_val, Y_test	are	corresponding	gender	labels.	
X_train	is	a	3-D	matrix	with	size	(N, H, W),	where	N	is	the	number	of	training	
images,	H=W=64	is	the	size	of	the	images.	Y_train	is	a	1-D	vector	with	length	N.	
To	read	the	train,	validation	and	test	files,	you	can	use	the	function	textread()	as	
follows.	

[name, label] = textread('celebA_gender_train.txt', '%s
%d');

It	will	return	a	cell	‘name’	with	file	names	in	it	and	a	vector	‘label’	with	labels	in	it.	
Then	you	can	create	a	matrix	X_train	with	size	(N, H, W)	and	loop	for	each	

element	in	the	cell	‘name’	to	read	the	image	and	put	it	into	the	matrix	X_train.	You	
can	use	the	function	imread()	to	load	images,	for	example,	

I = imread([‘../files/’, name{i}]);
Note	that	you	need	to	use	the	braces	{}	to	index	a	cell.	Also,	the	image	you	load	may	
be	a	color	image	with	3	channels	(RGB).	You	need	to	convert	it	to	grayscale	image	
before	putting	it	into	your	data	matrix.	You	can	use	the	function	rgb2gray()	here.	

b. Model	training	and	testing.	We	have	provided	you	with	Matlab	files:	
svm_gender.m,	LBP.m	and	getmapping.m.	The	files	are	used	to	train	and	test	an	SVM	
classifier	and	need	to	go	in	the	same	directory	as	your	function	load_data().	After	
loading	the	data,	run	the	function	svm_gender	([Acc,	model]	=	svm_gender(X_train,	
Y_train,	X_val,	Y_val,	X_test,	Y_test);)	and	report	the	performance	you	got	on	the	
training	and	testing	set,	respectively.	

c. Challenge	Problem:	Regularization.	In	the	file	svm_gender.m,	we	use	the	function	
fitclinear	to	train	an	SVM	classifier.	This	function	has	an	optional	argument	‘Lambda’	
which	controls	the	strength	of	regularization	(see	the	documentation	of	fitclinear).	
Set	different	lambda	values	and	see	how	they	will	affect	the	training	and	testing	
performance.	Report	your	results	and	briefly	discuss	your	conclusion.	
	

3. Train	a	network	to	recognize	gender.	
We	have	provided	you	with	the	following	Matlab	files:	cnn_gender.m,	
cnn_gender_init.m,	cnn_gender_deploy.m,	and	cnn_gender_setup_data.m.	These	files	
need	to	go	in	<MatConvNetDir>/examples/426.		We	also	provide	you	with	cnn_test.m	
which	needs	to	go	in	<MatConvNetDir>/examples.	The	CelebA	dataset	you	downloaded	
earlier	needs	to	go	in	<MatConvNetDir>/data/.		Copy	getImageStats.m	and	
getImageBatch.m	from	<MatConvNetDir>/examples/imagenet	to	
<MatConvNetDir>/examples/426.		
	
You	need	to	specify	the	network	architecture	in	cnn_gender_init.m.	Your	architecture	
should	be	written	in	function net = orig(net, opts).	
	
Here	is	some	sample	code	from	
<MatConvNetDir>/examples/imagenet/cnn_imagenet_init.m.	We	have	added	some	
annotations	(in	italics)	so	you	can	better	understand	how	to	create	your	network.	

net.layers = {} ;
This	initializes	the	layers	of	network.	At	this	point	the	network	has	no	layers.	

net = add_block(net, opts, '1', 11, 11, 3, 96, 4, 0) ;
This	adds	a	few	layers	to	the	network.	The	add_block	function	adds	a	convolution	layer,	a	
batch	normalization	layer,	and	a	ReLU	layer.	See	the	comments	in	cnn_gender_init.m	for	
more	details	on	add_block.		
net = add_norm(net, opts, '1') ;
This	adds	a	normalization	layer	at	the	end	(top)	of	the	network	(after	the	ReLU	from	
add_block).	See	the	comments	in	cnn_gender_init.m	for	more	information	about	
add_norm.	
net.layers{end+1} = struct('type', 'pool', 'name', 'pool1', ...
 'method', 'max', ...

 'pool', [3 3], ...
 'stride', 2, ...
 'pad', 0) ;
This	specifies	a	new	layer	at	the	end	(top)	of	the	current	network.	This	layer	is	a	Pooling	
layer,	this	is	specified	after	the	‘type’	parameter.	Each	layer	has	a	name,	and	this	one	is	
given	the	name	‘pool1’	since	it	is	the	first	pooling	layer.	The	type	of	pooling	must	be	
specified,	and	in	this	layer	max	pooling	is	used.	Max	pooling	chooses	the	maximum	value	in	
a	window	and	discards	the	rest.	The	method	(or	type	of	pooling)	is	specified	by	‘max’.	
Here	the	window	is	3x3,	which	is	specified	by	‘pool’, [3 3].	And	this	pooling	operation	
is	applied	every	2	pixels,	which	is	specified	by	‘stride’, 2.	

In	cnn_imagenet_init.m	in	the	alexnet	function,	there	are	5	convolution	layers,	and	then	a	
few	fully	connected	layers.	Fully	connected	layers	are	specified	like	convolution	layers	in	
MatConvNet,	where	the	convolutions	are	the	same	size	as	the	input.		
	
net = add_block(net, opts, '6', 6, 6, 256, 4096, 1, 0) ;
This	specifies	the	first	Fully	Connected	(FC)	layer	in	the	alexnet	function.	The	input	to	this	
layer	is	6x6x256	(256	6x6	feature	maps).	By	convolving	this	input	with	4096	filters	of	size	
6x6x256,	we	connect	each	input	neuron	to	each	output	neuron.	So	when	adding	a	FC	layer,	
the	convolution	size	must	be	the	same	as	the	input	size,	and	the	output	size	must	be	the	
number	of	neurons	in	the	fully	connected	layer.	
	
a. Specify	the	following	architecture	for	gender	recognition:	

Conv1:	Convolution	Layer	11x11	Filters	with	16	channels,	stride=1,	pad=0	
														Batch	Norm	(This	is	a	part	of	add_block)	

ReLU	Layer	(This	is	a	part	of	add_block)	
Normalization	Layer	
Max	Pooling	Layer	3x3,	stride	2,	pad	0	

Conv2:	Convolution	Layer	5x5	Filters	with	32	channels,	stride=1,	pad=2.	
														Batch	Norm	

ReLU	Layer	
Normalization	Layer	
Max	Pooling	Layer	3x3,	stride	2,	pad	0	

Conv3:	Convolution	Layer	3x3	Filters	with	64	channels,	stride=1,	pad=1.		
														Batch	Norm	

ReLU	Layer	
Conv4:	Convolution	Layer	3x3	Filters	with	64	channels,	stride=1,	pad=1.		
														Batch	Norm	

ReLU	Layer	
Conv5:	Convolution	Layer	3x3	Filters	with	64	channels,	stride=1,	pad=1.		
														Batch	Norm	

ReLU	Layer	
Max	Pooling	Layer	3x3,	stride	2,	pad	0	

FC6:	Fully	Connected	Layer	with	64	units,	stride=1,	pad=0.		
														Batch	Norm	

ReLU	Layer	

Dropout	50%	(Note	that	the	default	dropout	rate	is	50%	so	this	
does	not	need	to	be	specified	in	your	code.	See	add_dropout	in	
cnn_gender_init.m)	
FC7:	Fully	Connected	Layer	with	64	units,	stride=1,	pad=0.		
														Batch	Norm	

ReLU	Layer	
Dropout	50%	

FC8_gender:	Fully	Connected	Layer	with	2	units,	stride=1,	pad=0	
PLEASE	take	advantage	of	add_block,	and	add_norm	functions	in	

cnn_gender_init.m.	Note	that	add_block	adds	a	convolution	layer,	a	batch	
normalization	layer,	and	a	ReLU	layer.	
b. Train	this	network	by	running	cnn_gender.m.	This	should	take	about	10	minutes	to	

train	on	your	laptops.		
cnn_gender_init	loads	train,	validation,	and	test	files	from	Data/CelebA/Files	(1	is	
male,	2	is	female).	This	will	run	for	4	epochs.	Looking	at	cnn_gender.m,	you	will	see	
that	first	cnn_train	is	called	and	then	cnn_test.	cnn_train	trains	the	network	
and	produces	the	training	and	validation	errors.	cnn_test	loads	the	test	data	and	
evaluates	the	trained	network	on	this	data.	When	running	cnn_gender.m,	you	will	
see	many	things	printed.	First,	the	network	architecture	is	printed,	then	the	number	
of	parameters	are	printed,	as	well	as	the	amount	of	memory	required	to	store	the	
data	during	training.	Then	for	each	iteration,	the	training	error	is	printed,	and	after	
each	epoch,	the	current	model	is	tested	on	the	validation	data,	printing	the	error	for	
that	as	well.	The	only	error	we	care	about	is	the	top1err.	The	top5err	will	
always	be	0,	since	there	are	only	two	classes.	This	is	repeated	for	4	epochs.	Your	
final	model	will	be	saved	in	<MatConvNet>/data/gender-orig-bnorm-simplenn/net-
epoch-4.mat.	cnn_test	is	then	called.	This	simply	loads	the	test	data	and	evaluates	
the	final	model	on	this	data.		Again,	the	network	architecture	is	printed	along	with	
the	parameter	and	data	memory	information.	Though	the	errors	will	say	val:
epoch 04:	the	trained	network	is	being	evaluated	on	the	test	set.		The	results	of	
training	are	being	saved	after	each	epoch	in	<MatConvNetDir>/data/gender-orig-
bnorm-simplenn.	Every	time	you	restart	training,	it	will	start	from	the	most	recently	
saved	epoch.	In	order	to	train	from	scratch,	you	must	delete	the	directory	
<MatConvNetDir>/data/gender-orig-bnorm-simplenn.	
How	is	the	number	of	epochs	being	specified?	What	are	the	different	learning	rates?	
When	is	the	learning	rate	changed?	What	is	your	final	validation	error?	Your	test	
error?	
After	epoch	1,	the	training	error	should	be	around	0.25.	At	the	end	of	training,	the	
training	error	should	be	around	0.08,	the	validation	error	should	be	around	0.06	
and	the	test	error	should	be	around	0.07.	

c. Download	three	images	from	the	Internet,	of	some	public	figures	of	your	choosing.	
Resize	the	images	to	64x64	and	use	your	trained	network	to	classify	the	images.	
Remember	1	is	male	and	2	is	female.	Submit	your	images	as	well	as	your	results	
along	with	a	discussion.	
trainedNet = load(‘data/gender-orig-bnorm-simplenn/net-
epoch-4.mat’);

%remove dropout, softmax, batch norm etc.
trainedNet.net = cnn_gender_deploy(trainedNet.net);
%load image and compute res as in problem 1
…

	
4. Shrink	the	network	from	problem	3.	

Starting	with	the	network	from	problem	3,	“shrink”	it	as	much	as	possible	while	still	
achieving	a	maximum	error	of	0.1	on	the	test	set.	By	“shrink”	we	mean	reduce	the	
number	of	parameters.	This	can	be	done	by	using	fewer	layers,	fewer	convolutional	
filters,	more	pooling	to	reduce	the	image	size,	etc.	The	network	from	problem	3	has	
220,000	parameters	(the	number	of	parameters	is	printed	when	training	starts).	Feel	
free	to	do	this	however	you	like.		Specify	the	network	architecture	in	cnn_gender_init.m	
and	please	name	the	architecture	‘mini’.	Note	that	to	run	this	‘mini’	architecture	you	
will	need	to	change	opts.modelType = 'orig' ; in	cnn_gender.m	and opts.model =
'orig' ; in	cnn_gender_init.m.	Do	not	change	the	number	of	epochs	or	the	learning	
rate.
For	50%	credit,	reduce	the	number	of	parameters	to	below	100,000.	
For	75%	credit,	reduce	the	number	of	parameters	to	below	50,000.	
For	100%	credit,	reduce	the	number	of	parameters	to	below	10,000.	
The	student	who	submits	the	network	with	the	fewest	number	of	parameters	will	
receive	10	BONUS	POINTS	on	this	assignment.	
Provide	your	final	architecture	in	your	write-up	and	show	how	the	number	of	
parameters	is	calculated.	
	

5. Challenge	Problem:	Train	a	multi-task	network	to	recognize	gender	and	smiling	
at	the	same	time.	Please	create	a	new	set	of	files	(cnn_gs*)	for	this	problem.	

Train	a	network	that	recognizes	both	gender	and	smiling.	Start	with	your	mini	network	
from	problem	4.		Do	this	in	two	ways	(specifying	two	different	architectures):	

1. By	replacing	the	final	layer	for	gender	with	a	final	layer	which	has	4	units	
(1=male	not	smiling,	2=female	not	smiling,	3=male	smiling,	4=female	smiling).		

2. By	connecting	FC7	to	two	FC8s,	one	for	gender	and	one	for	smiling.	(This	
requires	changing	vl_simplenn.m).	

	
Submission:	Please	submit	all	Matlab	files	along	with	a	README	so	that	the	TA	can	
run	your	code.	For	the	CNN	problems,	the	TA	should	be	able	to	run	your	code	by	
adding	it	to	their	<MatConvNet>	directory.	Submit	your	trained	models	for	each	
problem	along	with	your	code.	

