Practice Final
CMSC 426

The final will be cumulative for the whole semester. You should consider the 1st and 2nd Practice midterms as providing notes and practice for the final. In addition, the final will cover the following material, which we have discussed since the second midterm.

- The Essential Matrix, and epipolar geometry.
 - Understand what the Essential matrix means. How can it be used to determine whether two image points come from the same scene point? What is its relationship to the epipolar constraint?
 - Understand how to build the Essential matrix when the camera translates but does not rotate.
 - Understand how to build an Essential matrix when there is also rotation.
 - Understand how the 8 point algorithm can be used to construct the Essential matrix.

- Image coordinates and world coordinates. You should understand what we mean when we represent an image point with world coordinates, and when we represent an image with image coordinates, relative to the camera.
 - Given a description of a camera’s focal point and local coordinate system, you should be able to translate between camera coordinates and world coordinates.

- 3D Motion Matrices
 - Know that a 3D rotation matrix has rows (and columns) that are orthonormal.
 - Be able to construct a 3D rotation matrix for simple rotations.
 - Understand that the rows of a rotation matrix represent the x, y and z directions in a new coordinate system.
 - Understand how to write translation in matrix form, and combine rotation and translation in a single matrix.

- Deep Learning
 - Understand how gradient descent works. Given a function, you should be able to compute its gradient and find the result of a gradient descent step.
 - Understand what a perceptron is and how the perceptron algorithm works. Know that the perceptron is a linear separator.
 - Understand how a feedforward neural network works. Given weights bias and inputs, for example, you should be able to figure out what it computes.
 - Understand what is particular about Convolutional Neural Networks compared to a general feedforward neural network.
 - Understand the basic idea of backpropagation and how to use the chain rule to compute the gradients in a neural network.
This is also a good time to take stock of some themes that run throughout the course. There are a few main concepts, mostly mathematical, that underlie much of the material we have discussed:

- **Correlation and Convolution**
 First, we discussed how to use convolution to smooth an image, or to find image derivatives. Convolutions show up later in convolutional neural networks.

- **Gradients**
 Image gradients are a fundamental way in which we measure how an image is changing. Understanding how to compute an image gradient, and getting an intuition for its properties is very important. This includes, for example, understanding that the direction of the image gradient encodes the direction in which the image is changing most rapidly, while the magnitude of the gradient tells us how rapidly the image is changing. Image gradients are basic to edge detection, but they also show up in optical flow, and again in gradient descent.

- **Representing Motion with Matrices**
 We have talked about how to represent rotation and translation in a matrix. This includes understanding what a rotation matrix is and how to build one. We’ve also talked about affine transformations, similarity transformations, and scaled orthographic projection with matrices. 3D matrices are needed for 3D operations, including the Essential matrix.

- **3D Geometry: Perspective projection and epipolar geometry**
 The core of this is understanding the pinhole camera model, and how it can be used to determine the relationship between a camera, a 3D point, and its 2D image. This is fundamental in any vision task that attempts to recover the 3D structure of the world. Next, we have talked about the relationship between a 3D scene and two cameras. This gives rise to epipolar geometry, which we have used to constrain stereo matching, understand flow fields and the focus of expansion, and build the Essential matrix.
The following equations are important. You should understand these equations and be able to use them.

1D and 2D correlation

\[
F \circ I(x) = \sum_{i=-N}^{N} F(i)I(x + i) \quad F \circ I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j)I(x + i, y + j)
\]

1D and 2D Convolution

\[
F \ast I(x) = \sum_{i=-N}^{N} F(i)I(x - i) \quad F \ast I(x, y) = \sum_{j=-N}^{N} \sum_{i=-N}^{N} F(i, j)I(x - i, y - j)
\]

Definition of a gradient: \[\nabla I = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) \]

Formula for using the gradient to determine how the image changes as you move in a particular direction

\[I(x + \Delta \cos \theta, y + \Delta \sin \theta) - I(x, y) = \langle v, \nabla I \rangle \quad \text{where} \quad v = (\Delta \cos \theta, \Delta \sin \theta) \]

Definition of the partial derivative.

\[\frac{\partial I(x, y)}{\partial x} = \lim_{\Delta x \to 0} \frac{I(x + \Delta x, y) - I(x, y)}{\Delta x} \]

Perspective projection with focal point at the origin and camera facing in the z direction. \((x, y) = f(X/Z, Y/Z)\)

\[Z = f \frac{T_x}{d} \]

Equation relating disparity to depth in stereo

Equations for the Essential matrix. \(E\) is the Essential matrix, \(T\) is a vector representing the translation between the two focal points, \(R\) is a matrix representing the rotation between the two cameras.

\[
p^T E p = 0 \quad \text{E=SR}
\]

Gradient Descent. This update is the main point:

\[\mathbf{x}_n \leftarrow \mathbf{x}_c - \eta \nabla f_{\mathbf{x}}(\mathbf{x}_c) \]

The chain rule. This is used to compute the gradient:
What a layer of a neural network computes:

$$a_j^l = \sigma \left(\sum_k w_{jk}^l a_{k}^{l-1} + b_k^l \right)$$

The quadratic loss function:

$$C_{\text{quadratic}} = \frac{1}{2n} \sum_x \| y(x) - a^L(x) \|^2$$

An example of a nonlinear function

$$\text{RELU}(z) = \max(0, z)$$

Practice Problems

1. 3D rotations. Which of the following matrices represent 3D rotations? Explain your answer for each.

 - \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 0 & 0 & -1 \\
 0 & 1 & 0 \\
 1 & 0 & 0
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
 -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
 \end{pmatrix}
 \]
 - \[
 \begin{pmatrix}
 \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
 -\frac{\sqrt{2}}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
 \end{pmatrix}
 \]

2. Consider a neural network that has no nonlinearity. It has three input units. These are connected to an output unit, with weights 1, 2 and 3. There is no
bias term. The loss function is the L2 norm between the output and label. We are given an input of \((3,2,3)\) and a label of 20. With this input, what will the network output?

3. What is the gradient of the loss with respect to the weights? If a gradient descent step consists of changing the weights based on the gradient times .01 (the step size) what will the new weights be? What is the loss with the new weights (I suggest you use Matlab for this)?

4. Using Matlab, repeat this process until it converges. What weights do you get? What loss?

5. Suppose we add Relu as a nonlinearity. So the output of the network is the max of 0 and the output of the previous network. How would this change the backpropagation step and the result?

6. Suppose we have \(z(x,y) = (x+y)\sin(x+y)\). Using the chain rule, find the gradient of \(z\) with respect to \((x,y)\) at the point \(x = 0, y = 0\).

7. Essential Matrix
 a. Suppose we have a camera that is facing in the direction \(zvec = (1/\sqrt{2}, 0, 1/\sqrt{2})\), that is, that is the \(z\) direction relative to the camera. The \(y\) direction for the camera is \(yvec = (0,1,0)\). What is the \(x\) direction for the camera?

 b. Suppose the camera in (a) has a focal point at \(fp = (1,1,1)\). If there is a point in the world with coordinates \(p = (6,6,6)\), what will its coordinates be in the coordinate system defined by this camera?

 c. What will be the coordinates of the point \(p\) in the image taken by this camera (using the point and camera from (a) and (b))? Assume the camera has a focal length of 1.

d. Suppose the Essential matrix looks like this:

\[
\begin{pmatrix}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 1 & a
\end{pmatrix}
\]

Suppose further that we know that a point with coordinates \((1,1,1)\) in the first camera’s coordinates matches a point with coordinates \((0,2,1)\) in the second camera. What would you expect the value of \(a\) to be?
e. Actually, the resulting Essential matrix you got in problem (d) is not really a valid Essential matrix. Explain why this is the case.

f. Suppose we have two cameras. The first has a focal point at \((0,0,0)\) and an image plane of \(z = 1\). The second has a focal point at \((10,0,0)\) and an image plane of \(z = 1\). However, the second camera has been rotated so that its \(x\) direction is \((0,1,0)\) and its \(y\) direction is \((-1,0,0)\). What is the essential matrix that relates these cameras?

g. Suppose we have a camera with a focal point at \((0,0,0)\), pointing in the \(z\) direction, with a focal length of 1. We have another camera with a focal point at \((10,8,2)\). Where is the epipole in the first image?