
Practice Final 
CMSC	426	

	
The	final	will	be	cumulative	for	the	whole	semester.		You	should	consider	the	1st	and	
2nd	Practice	midterms	as	providing	notes	and	practice	for	the	final.		In	addition,	the	
final	will	cover	the	following	material,	which	we	have	discussed	since	the	second	
midterm.	
	

• The	Essential	Matrix,	and	epipolar	geometry.	
o Understand	what	the	Essential	matrix	means.		How	can	it	be	used	to	

determine	whether	two	image	points	come	from	the	same	scene	
point?		What	is	its	relationship	to	the	epipolar	constraint?	

o Understand	how	to	build	the	Essential	matrix	when	the	camera	
translates	but	does	not	rotate.	

o Understand	how	to	build	an	Essential	matrix	when	there	is	also	
rotation.	

o Understand	how	the	8	point	algorithm	can	be	used	to	construct	the	
Essential	matrix.	

• Image	coordinates	and	world	coordinates.		You	should	understand	what	we	
mean	when	we	represent	an	image	point	with	world	coordinates,	and	when	
we	represent	an	image	with	image	coordinates,	relative	to	the	camera.	

o Given	a	description	of	a	camera’s	focal	point	and	local	coordinate	
system,	you	should	be	able	to	translate	between	camera	coordinates	
and	world	coordinates.	

• 3D	Motion	Matrices	
o Know	that	a	3D	rotation	matrix	has	rows	(and	columns)	that	are	

orthonormal.		
o Be	able	to	construct	a	3D	rotation	matrix	for	simple	rotations.	
o Understand	that	the	rows	of	a	rotation	matrix	represent	the	x,	y	and	z	

directions	in	a	new	coordinate	system.	
o Understand	how	to	write	translation	in	matrix	form,	and	combine	

rotation	and	translation	in	a	single	matrix.	
• Deep	Learning	

o Understand	how	gradient	descent	works.		Given	a	function,	you	
should	be	able	to	compute	its	gradient	and	find	the	result	of	a	gradient	
descent	step.	

o Understand	what	a	perceptron	is	and	how	the	perceptron	algorithm	
works.		Know	that	the	perceptron	is	a	linear	separator.	

o Understand	how	a	feedforward	neural	network	works.		Given	weights	
bias	and	inputs,	for	example,	you	should	be	able	to	figure	out	what	it	
computes.	

o Understand	what	is	particular	about	Convolutional	Neural	Networks	
compared	to	a	general	feedforward	neural	network.	

o Understand	the	basic	idea	of	backpropagation	and	how	to	use	the	
chain	rule	to	compute	the	gradients	in	a	neural	network.	



	
This	is	also	a	good	time	to	take	stock	of	some	themes	that	run	throughout	the	
course.		There	are	a	few	main	concepts,	mostly	mathematical,	that	underlie	much	of	
the	material	we	have	discussed:	
	

• Correlation	and	Convolution	
First,	we	discussed	how	to	use	convolution	to	smooth	an	image,	or	to	find	
image	derivatives.		Convolutions	show	up	later	in	convolutional	neural	
networks.	

• Gradients	
Image	gradients	are	a	fundamental	way	in	which	we	measure	how	an	image	
is	changing.		Understanding	how	to	compute	an	image	gradient,	and	getting	
an	intuition	for	its	properties	is	very	important.		This	includes,	for	example,	
understanding	that	the	direction	of	the	image	gradient	encodes	the	direction	
in	which	the	image	is	changing	most	rapidly,	while	the	magnitude	of	the	
gradient	tells	us	how	rapidly	the	image	is	changing.		Image	gradients	are	
basic	to	edge	detection,	but	they	also	show	up	in	optical	flow,	and	again	in	
gradient	descent.	

• Representing	Motion	with	Matrices	
We	have	talked	about	how	to	represent	rotation	and	translation	in	a	matrix.		
This	includes	understanding	what	a	rotation	matrix	is	and	how	to	build	one.		
We’ve	also	talked	about	affine	transformations,	similarity	transformations,	
and	scaled	orthographic	projection	with	matrices.	3D	matrices	are	needed	
for	3D	operations,	including	the	Essential	matrix.	

• 3D	Geometry:	Perspective	projection	and	epipolar	geometry	
The	core	of	this	is	understanding	the	pinhole	camera	model,	and	how	it	can	
be	used	to	determine	the	relationship	between	a	camera,	a	3D	point,	and	its	
2D	image.		This	is	fundamental	in	any	vision	task	that	attempts	to	recover	the	
3D	structure	of	the	world.		Next,	we	have	talked	about	the	relationship	
between	a	3D	scene	and	two	cameras.		This	gives	rise	to	epipolar	geometry,	
which	we	have	used	to	constrain	stereo	matching,	understand	flow	fields	and	
the	focus	of	expansion,	and	build	the	Essential	matrix.			
	

	
	
	
	
	
	
	
	
	
	
	
	



The	following	equations	are	important.	You	should	understand	these	equations	and	
be	able	to	use	them.	
	
1D	and	2D	correlation	
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1D and 2D Convolution 
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Definition of a gradient: ⎟⎟
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Formula for using the gradient to determine how the image changes as you move in a 
particular direction 
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Definition	of	the	partial	derivative.	
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Perspective	projection	with	focal	point	at	the	origin	and	camera	facing	in	the	z	
direction.		(x,y)	=	f(X/Z,	Y/Z)	

Equation	relating	disparity	to	depth	in	stereo					 	
	
Equations	for	the	Essential	matrix.		E	is	the	Essential	matrix,	T	is	a	vector	
representing	the	translation	between	the	two	focal	points,	R	is	a	matrix	
representing	the	rotation	between	the	two	cameras.	

		 		E=SR	

Gradient	Descent.		This	update	is	the	main	point:	 	

The	chain	rule.		This	is	used	to	compute	the	gradient:	 	



What	a	layer	of	a	neural	network	computes: 	

The	quadratic	loss	function: 	

An	example	of	a	nonlinear	function	 	
	
Practice	Problems	
	
	
	
	
	
	

1. 3D	rotations	
a. Which	of	the	following	matrices	represent	3D	rotations?		

Explain	your	answer	for	each.	
1 0 0
0 1 0
0 0 1

	

	
This	is	a	rotation,	just	the	identity	transformation,	meaning	a	rotation	of	0	degrees.	
	

0 0 −1
0 1 0
1 0 0

	

	
Also	a	rotation.		Note	that	the	rows	are	orthonormal.			
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No.		The	second	and	third	rows	are	not	orthogonal.	
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Yes,	the	rows	are	orthonormal.		(By	the	way,	the	determinant	of	this	matrix	is	1.		If	the	
rows	are	orthonormal,	the	determinant	could	be	-1,	which	would	mean	that	there	is	a	
rotation	and	a	reflection.)	
	

2. Consider	a	neural	network	that	has	no	nonlinearity.		It	has	three	input	units.		
These	are	connected	to	an	output	unit,	with	weights	1,	2	and	3.		There	is	no	
bias	term.	The	loss	function	is	the	L2	norm	between	the	output	and	label.		We	
are	given	an	input	of	(3,2,3)	and	a	label	of	20.		With	this	input,	what	will	the	
network	output?	

	
The	output	is	just	the	product	of	each	input	by	the	corresponding	weight,	added	
together.		3*1	+	2*2	+	3*3	=	16.		There	is	no	nonlinearity	here.	
	

3. What	is	the	gradient	of	the	loss	with	respect	to	the	weights?		If	a	gradient	
descent	step	consists	of	changing	the	weights	based	on	the	gradient	times	.01	
(the	step	size)	what	will	the	new	weights	be?		What	is	the	loss	with	the	new	
weights	(I	suggest	you	use	Matlab	for	this)?	

	
We	can	write:	
C	=	(y-a)^2	
a	=	w1*x1	+	w2x2	+	w3x3.	
	
dC/da	=	-2(y-a).	
da/dwi	=	xi.	
	
(I’m	being	a	little	lazy	here	and	using	d	to	indicate	the	partial	derivative,	instead	of	
inserting	the	partial	symbol.		So	dC/da	is	the	partial	of	C	with	respect	to	a).	
	
So	dC/dwi	is	-2(y-a)xi.	
	
So	the	gradient	is:	
-2(y-a)(x1,x2,x3).	
	
With	the	given	input	we	have	a	=	16	(see	last	problem).		This	gives	us	a	gradient	of:	
-2(20-16)(3,2,3)	=	-8(3,2,3)	=	(-24,-16,-24).		Taking	a	step	of	.01	times	the	negative	
gradient	we	have	the	new	weights	as:	
(1,2,3)	+	(.24,	.16,	.24)	=	(1.24,	2.16,	3.24).				
	
	



4. Using	Matlab,	repeat	this	process	until	it	converges.		What	weights	do	you	
get?		What	loss?	

	
In	Matlab:	
	
>>	x	=	[3;2;3];	
>>	w	=	[1;2;3];	
>>	y	=	20;	
>>	for	i	=	1:100	a	=	x'*w;	g	=	-2*(y-a)*x;	w	=	w	-	.01*g;	end	
	
w	=	
	
				1.5455	
				2.3636	
				3.5455	
	
>>	a	
	
a	=	
	
				20	
	
So	the	loss	is	0.	
	
	

5. Suppose	we	add	Relu	as	a	nonlinearity.		So	the	output	of	the	network	is	the	
max	of	0	and	the	output	of	the	previous	network.		How	would	this	change	the	
backpropagation	step	and	the	result?	

	
	
We	could	write	this	as:	
	
z	=	w1*x1	+	w2x2	+	w3x3.	
	
and		
	
a	=	max(z,0)	
	
So	dC/dwi	is	now	(dC/da)(da/dz)(dz/dwi).		We	have:	
	
dC/da	=	-2(y-a).	
dz/dwi	=	xi.	
	
We	just	need	to	compute	da/dz.		That	is,	if	we	change	z	a	little	bit,	how	does	this	
change	a?		The	answer	is	that	if	z	is	positive,	the	derivative	equals	1,	and	if	z	is	negative	
the	derivative	is	0.		If	z	is	exactly	0,	things	seem	a	little	tricky,	since	the	derivative	isn’t	



really	defined	at	this	point.		But	it	turns	out	that	since	this	is	just	a	single	value,	we	can	
get	away	with	setting	the	derivative	to	0	at	this	point.		So	if	we	define	h	to	be	a	function	
so	that	h(z)	=	1	when	z	>	0,	and	h(z)	=	0	otherwise,	we	can	write	
	
da/dz	=	h(z).		And	we	get	the	gradient	of	C	with	respect	to	the	weights	as:	
	
-2(y-a)h(z)(x1,x2,x3).	
	
In	the	example	we	had	above,	z	was	always	greater	than	0,	so	nothing	would	have	
been	any	different.	
	
	

6. Suppose	we	have	z(x,y)	=	(x+y)sin(x+y).		Using	the	chain	rule,	find	the	
gradient	of	z	with	respect	to	(x,y)	at	the	point	x	=	0,	y	=	0.	

	
We	can	set	w	=	x+y.		Then	we	have	z	=	w*sin(w).		dz/dw	=	sin(w)	+	wcos(w).		We	have	
dw/dx	=	1	and	dw/dy	=	1.		So	dz/dx	=	dz/dy	=	sin(x+y)	+	(x+y)cos(x+y).		So	the	
gradient	at	x	=	0,	y=0	is	zero.			
	

7. Essential	Matrix	
a. Suppose	we	have	a	camera	that	is	facing	in	the	direction	zvec	=	

(1/sqrt(2),	0	1/sqrt(2)),	that	is,	that	is	the	z	direction	relative	to	the	
camera.		The	y	direction	for	the	camera	is	yvec	=	(0,1,0).		What	is	the	x	
direction	for	the	camera?	

	
We	know	that	the	x,	y	and	z	directions	have	to	be	orthonormal.		So	the	inner	product	of	
xvec	and	yvec	has	to	be	0.		Since	this	inner	product	is	xvec(2),	this	means	that	the	y	
component	of	xvec	has	to	be	0.		Since	xvec.zvec	=	0,	we	must	have	(xvec(1)	+	
xvec(3))/sqrt(2)	=	0,	so	xvec(1)	=	-xvec(3).		Since	xvec	must	be	a	unit	vector,	we	have	
xvec(1)^2	+	xvec(3)^2	=	2xvec(1)^2	=	1.		So	xvec(1)	=	+-	1/sqrt(2).		This	means	either	
xvec	=	(1/sqrt(2),	0,	-1/(sqrt(2))	or	(-1/sqrt(2),	0,	1/sqrt(2)).		One	of	these	choices	
gives	us	a	left-handed	coordinate	system.		One	way	to	tell	if	the	coordinate	system	is	
correct	is	to	check	the	determinant	of	[xvec;	yvec;	zvec],	which	should	be	1.		Doing	this	
we	find	that	the	x	direction	should	be	xvec	=	(1/sqrt(2),	0,	-1/(sqrt(2)).	
	

b. Suppose	the	camera	in	(a)	has	a	focal	point	at	fp	=	(1,1,1).		If	there	is	a	
point	in	the	world	with	coordinates	p	=	(6,6,6),	what	will	its	
coordinates	be	in	the	coordinate	system	defined	by	this	camera?	

	
To	compute	the	x	coordinate,	we	take	(p-fp).xvec.		That	is,	((6,6,6)	–	(1,1,1)).	
(1/sqrt(2),	0,	-1/(sqrt(2)).		This	works	out	to	be	0.		We	compute	the	y	and	z	
coordinates	in	the	same	way,	and	get	the	point	(0,	5,	10/sqrt(2)).		
	

c. What	will	be	the	coordinates	of	the	point	p	in	the	image	taken	by	this	
camera	(using	the	point	and	camera	from	(a)	and	(b)?		Assume	the	
camera	has	a	focal	length	of	1.	



	
We	can	just	use	the	formula	(x,y)	=	f(X/Z,	Y/Z).		Since	we’ve	written	the	point’s	
coordinates	relative	to	the	camera,	it	is	as	if	we	have	a	camera	with	a	focal	point	at	the	
origin	and	x,	y	and	z	directions	in	the	normal	directions.		So	we	get	the	image	point	(0,	
1/2sqrt(2)).		
	

d. Suppose	the	Essential	matrix	looks	like	this:	
	

	
1 0 2
2 1 0
3 1 𝑎

	

	
Suppose	further	that	we	know	that	a	point	with	coordinates	(1,1,1)	in	
the	first	camera’s	coordinates	matches	a	point	with	coordinates	(0,	2,	
1)	in	the	second	camera.		What	would	you	expect	the	value	of	a	to	be?	

	
Multiplying	(1,1,1)E(0,2,1)T	we	get	(6,2,a)(0,2,1)T	=	4	+	a	=	0.		So	a	=	-4.	
	

e. Actually,	the	resulting	Essential	matrix	you	got	in	problem	(d)	is	not	
really	a	valid	Essential	matrix.		Explain	why	this	is	the	case.	

	
The	Essential	matrix	must	have	rank	2.		This	can	be	seen	by	the	fact	that	the	E=S*R	and	

𝑆 =
0 −𝑇! 𝑇!
𝑇! 0 −𝑇!
−𝑇! 𝑇! 0

	

has	rank	2.		The	solution	given	in	(d)	does	not	have	rank	2,	since	its	determinant	is	not	
0.	
	

f. Suppose	we	have	two	cameras.		The	first	has	a	focal	point	at	(0,0,0)	
and	an	image	plane	of	z	=	1.		The	second	has	a	focal	point	at	(10,0,0)	
and	an	image	plane	of	z	=	1.		However,	the	second	camera	has	been	
rotated	so	that	its	x	direction	is	(0,1,0)	and	its	y	direction	is	(-1,0,0).		
What	is	the	essential	matrix	that	relates	these	cameras?	

	

	E=S*R	and	𝑆 =
0 −𝑇! 𝑇!
𝑇! 0 −𝑇!
−𝑇! 𝑇! 0

=
0 0 0
0 0 −10
0 10 0

.		In	this	case,	we	also	have	

𝑅 =
0 1 0
−1 0 0
0 0 1

	so	we	get	E=	
0 0 0
0 0 −10
−10 0 0

.		We	can	verify	this	by	noting	that	if	

a	point	in	the	first	camera	has	coordinates	(a,b,1)	its	x	coordinate	in	the	second	image	
should	be	-b.		Multiplying	(a,b,1)	by	E	we	get	(-10,0,-10b).		Multiplying	this	by	(c,d,1)	
and	setting	the	result	to	0	we	get	-10c-10b=0	so	c	=		-b,	as	it	should	be.	
	



g. Suppose	we	have	a	camera	with	a	focal	point	at	(0,0,0),	pointing	in	the	
z	direction,	with	a	focal	length	of	1.		We	have	another	camera	with	a	
focal	point	at	(10,8,2).		Where	is	the	epipole	in	the	first	image?	

	
The	epipole	is	just	the	location	in	the	image	where	the	second	focal	point	would	
appear,	if	it	could	be	seen.		This	is	just	(5,4,1).	
	
	
	
	
	
	
	
	
	
	
	


