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Motivation 
 
To do vision, we need to model the world.  For example, in edge detection, we used a 
qualitative model based on generalities about geometry and objects, which told us that the 
image usually changes rapidly at the boundary of objects.  We will use mathematical 
certainties about 3D geometry a lot in the weeks to come.  But often our knowledge of 
the world is more statistical in nature. 
 
Some examples:  
 

1. To detect contours, it will help to have some statistical model of contours that 
says that object boundaries are more likely to have certain shapes, though any 
shape is possible.  This might tell us, for example, that two boundary fragments 
are more likely to be connected by a smooth, simple shape than by a long, 
convoluted path.  To model this, we would need a probability distribution over all 
shapes, that tells us how likely any shape is to be a boundary. 

2. Face detection.  There is great variety in how a face can look, but some 
appearances are much more likely to be faces than are others.  When we want to 
model the diversity of the real world, a probability distribution is useful. 

3. Background subtraction.  This will be a case we look at in more detail.  The basic 
idea of background subtraction is that we want to separate the background in front 
of the camera, which is more or less the same over time, from foreground objects 
that may briefly enter and leave the scene.  To model the background, we will 
take video of the scene with just the background present.  Then we will use this 
background model to understand a new image, and to classify every pixel in the 
image as either background or foreground.   

 
For example, suppose we set up a camera in front of your house, and want to 
detect when someone comes by.  One way to do this is to look for changes in the 
image.  When is it not just an image of your front steps?  One way to do this is to 
take a picture of the steps when no one is there, and compare this to a new image.  
When they are different, something has changed.  For example, there may be a 
pixel that is dark, because the steps are dark.  If this pixel becomes bright, maybe 
a person is there.  This doesn’t work, however.  The brightness of pixels varies 
depending on lighting and weather, even when no one is there.  So the problem is 
how do we tell the difference between the normal variation in the intensity of a 
background pixel, and variation that is due to the presence of a foreground object, 
like a person?  We can use statistics to model the background variation, so we can 
tell it from the foreground.  So, for example, we may find that when there is no 
one present, one pixel can vary tremendously in intensity due to lighting changes, 
while a second pixel is almost always dark.  Then, if the first pixel is bright in an 
image, this doesn’t provide much evidence that a person is present, but if the 
second pixel is bright, it’s a more useful sign that someone is out there. 



 
Probability Distribution 
 
Let’s just recall what a probability distribution would be like for a single pixel in an 
image.  The pixel will have a value from 0 to 255.  Each of these values is assigned a 
probability between 0 and 1, and the sum of the probabilities for all these possible values 
should be 1.  Let’s write p(I(x,y)=k) for the probability that the pixel at (x,y) will have an 
intensity of k, and we can say: 
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To do background subtraction, we really want to talk about the probability distribution of 
a pixel’s intensity, given that it is background.  We can denote the state that a pixel is 
background as B(x,y), and then p(I(x,y)=k|B(x,y)) denotes the probability that pixel (x,y) 
has intensity k, given that the pixel is background.  Similarly, we can use F(x,y) to denote 
that pixel (x,y) is foreground.  Then either F(x,y) or B(x,y) must be the case. 
 
It will also be important to recall Bayes’ law.  Suppose we have two events, C and D, and 
p(C|D) denotes the probability of event C occurring, given that event D has occurred.  
Then Bayes’ law states: 
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In the case of background subtraction, we can use Bayes’ law to determine: 
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The left hand side of the equation is the background subtraction problem we want to 
solve.  Given the intensity of pixel (x,y), what is the probability that it is background?  
The right hand side tells us how to determine this.  It says that we need to know 
p(I(x,y)=k|B(x,y)), which is the probability distribution for a background pixel.  And we 
need to know P(B(x,y)), which is called our prior on the probability that a pixel is 
background.  For example, experience might tell us that in only one image in 1,000 has a 
person come to our door and created a foreground pixel.  The denominator, as shown on 
the far right, can be broken into the sum of two parts, a probability distribution for the 
background and for the foreground.  So the main problem of background subtraction (in 
this formulation) is to find a way to compute a probability distribution for the foreground 
and background.  In our simple implementation, we ignore the priors and the probability 
distribution for foreground pixels, because we don’t have much knowledge of these, and 
instead just suppose that: 
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Then we use video of the background to estimate the right hand side of the equation, and 
heuristically use some threshold to identify background and foreground pixels. 
 
Sample Distribution 
 
The most straightforward way to model a probability distribution is by collecting 
samples.  For example, suppose we observe the pixel I(x,y) 1,000,000 times when we 
know that the pixel is due to background, and we find that it has an intensity of 117 
10,000 times.  Then it seems reasonable to suppose that P(I(x,y)=117|B(x,y))= 
10,000/1,000,000.  If we estimate every probability in the background distribution like 
this, we call the resulting distribution the Sample Distribution.  That is, we are assuming 
that the true probability of an event is the fraction of times we have observed it.   
 
Using the sample distribution means making the implicit assumption that the probability 
distribution that’s appropriate for a newly observed pixel is exactly the same as the 
probability distribution that produced all our previous observations.  We say that we are 
assuming that the distribution is ergodic, which means that it doesn’t change over time.  
Like all assumptions, it isn’t exactly true.  For example, the distribution of the intensity of 
a background pixel will likely change over time, as the sun rises, or the rain stops.  In 
practice, though, we will try to collect samples in which ergodicity is approximately true.  
 
This already gives us a method for performing background subtraction, using Bayes law 
and sample distributions to represent what the foreground and background intensity 
distributions are like. 

 
Kernel Density Estimation 
 
The problem with this approach is that we usually do not have enough information to get 
a really accurate estimate of the background distribution.  We can smooth out the noisy 
sample distribution using kernel density estimation.  In this case, we estimate: 
 

� �� � �
�

��
���

� 		

��

N

i

isk
N

kyxIP
1

2

2

2
)(exp

2

1
, 
�
  

 
Here there are N samples, and we are writing si to denote the intensity of sample i.   One 
way to think about this smoothing is to imagine what happens if we have just one sample, 
say, we observe a pixel with an intensity of 100.  Using a sample distribution, we assume 
that the probability that the intensity equals 100 in the future will be 1, and all other 
intensities have a probability of 0.  When we have many samples, we use a sample 
distribution that is the average of the sample distribution for one sample.  However, this 
really doesn’t seem like the best assumption.  Instead, with Kernel Density Estimation, 
when we observe the intensity 100, we assume the distribution of future intensities is a 
Gaussian centered at 100.  So 100 is the intensity that we most expect, but we also assign 



non-zero probabilities to similar intensities.  We assume 99 is also fairly likely, and 98 a 
bit less likely, etc….  How wide the Gaussian is depends on the parameter sigma, which 
we will probably choose heuristically.  Then when we have many samples, we average all 
these Gaussians together.   
 
Markov Models 
 
Everything we’ve done so far just models the distribution of the image in a single pixel.  
We can use these distributions on a whole image, if we assume that every pixel is 
independent.  Then, for example, to classify a pixel as foreground or background, we 
only need to use information that has to do with that pixel.  Independence means that 
what’s happening with other pixels doesn’t matter. 
 
These independence assumptions are usually pretty unrealistic.  So now we introduce a 
statistical model that does not make this assumption, called a Markov model.  We will 
describe Markov models using a 1D image.  The basic idea is much the same for a 2D 
image (although it turns out that in many cases, algorithmic issues that arise in dealing 
with 2D Markov models are very different than those for 1D Markov models).  We will 
consider these issues in trying to characterize textures. 
 
If we assume that every pixel has an identical, independent distribution, we can generate 
some simple textures.  For example, we could assume that every pixel has an equal 
chance of being 0 or 1, and if we randomly generate images from that distribution we 
would get something like: 
 
>> rand(5,12) > .5 
ans = 
     1     1     1     1     1     0     0     1     1     1     0     0 
     0     0     0     0     1     1     1     1     0     1     1     1 
     1     0     1     1     0     1     1     0     0     0     1     1 
     1     0     1     1     0     0     1     1     1     1     0     1 
     0     1     0     0     0     0     1     0     1     1     1     0 
 
Each row is a different sample of this texture.  However, textures like this aren’t very 
interesting.  Suppose instead we want to describe a texture of alternating 0s and 1s, which 
can look like: 
 
010101010101010101010101010 
 
or like: 
 
101010101010101010101010101 
 
Every pixel has an equal chance of being a 0 or 1, the same as in the previous 
distribution.  But the key thing about this new texture is that every pixel’s probability 
distribution depends on its neighbor.  So if the previous pixel is 0, then the next pixel 



must be a 1.  This texture is pretty simple; there are really only two instances of it.  To 
make it a little more statistical, we could describe a texture in which there each pixel has 
an 80% of being the same as the previous pixel, and a 20% chance of being different.  
Some instances of this texture look like the rows below: 
 
     0     1     1     1     0     0     0     0     1     0     0     0     0     0     0 
     0     0     1     0     0     1     1     0     0     0     0     0     0     0     0 
     1     0     0     0     1     0     0     0     0     0     0     1     1     1     1 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     1     1     0     0     0     1     1     0     1     1     1     1     1     1     1 
     0     0     0     0     0     0     0     0     0     1     1     1     1     1     1 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
     1     0     0     1     1     1     1     0     0     0     0     0     0     1     1 
     0     0     0     0     0     0     0     0     0     1     1     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
This creates patterns in which there are strings of consecutive 0s and 1s, but the lengths 
of these strings is stil random.  When the probability distribution of a pixel depends on its 
neighbors, we call this a Markov model.  The size of the neighborhood can vary.  The 
bigger the neighborhood, the more complex the textures we can generate.  For example, 
suppose we have a texture which consists of stripes five pixels wide, where each stripe 
has an arbitrary intensity that is different than its neighbors.  For example: 
 
0 0 0 0 0 2 2 2 2 2 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 
 
We can generate textures like this if each pixel looks at its last five neighbors.  If they are 
not all the same, then there is probability 1 that this pixel will have the same intensity as 
its immediate neighbor.  If the last five pixels are all the same, then this pixel has a 
randomly chosen intensity that is different from its immediate neighbor. 
 
 
 
 
 


