Texture

• Edge detectors find differences in overall intensity.
• Average intensity is only simplest difference.
Issues: 1) Discrimination/Analysis

The Goal of Texture Analysis

input image

True (infinite) texture

generated image

"Same" or "different"

Compare textures and decide if they’re made of the same “stuff”.

(Freeman)
2) Synthesis

The Goal of Texture Synthesis

input image

SYNTHESIS

True (infinite) texture generated image

Many more issues

3. Texture boundary detection.
4. Shape from texture.
We’ll focus on 1 and 2.

(www.cmap.polytechnique.fr/~maureen/vasarely3.jpg)
What is texture?

• Something that repeats with variation.
• Must separate what repeats and what stays the same.
• Model as repeated trials of a random process
 – The probability distribution stays the same.
 – But each trial is different.
 – This may be true (eg., pile of objects)
 – Or not really (tile floor).

Simplest Texture

• Each pixel independent, identically distributed (iid).
• Examples:
 – Region of constant intensity.
 – Gaussian noise pattern.
 – Speckled pattern
Texture Discrimination is then Statistics

• Two sets of samples.
• Do they come from the same random process?

Simplest Texture Discrimination

• Compare sample distributions (histograms).
 – Divide intensities into discrete ranges.
 – Count how many pixels in each range.
How/why to compare

- Simplest comparison is SSD, many others.
- Can view probabilistically.
 - Histogram is a set of samples from a probability distribution.
 - With many samples it approximates distribution.
 - Test probability samples drawn from same distribution. I.e., is difference greater than expected when two samples come from same distribution?

Chi square distance between texton histograms

\[\chi^2(h_i, h_j) = \frac{1}{2} \sum_{m=1}^{K} \frac{[h_i(m) - h_j(m)]^2}{h_i(m) + h_j(m)} \]

(Malik)
More Complex Discrimination

• Histogram comparison is very limiting
 – Every pixel is independent.
 – Everything happens at a tiny scale.

Wavelet representations

• Wavelet coefficients are less dependent than pixels
 – Neighboring pixels are very dependent.
 – This is why used for compression (JPEG2000).
• Less local, seem to capture more info.
Example (Forsyth & Ponce)

Squared responses Spatially blurred

Threshold squared, blurred responses, then categorize texture based on those two bits
Difference of Gaussian Filters

Spots and Oriented Bars
(Malik and Perona)
Gabor Filters

Gabor filters at different scales and spatial frequencies

top row shows anti-symmetric (or odd) filters, bottom row the symmetric (or even) filters.

\[\cos(kx + ky) \exp\left\{-\frac{x^2 + y^2}{2\sigma^2}\right\} \]

Gabor filters are examples of Wavelets

- We know two bases for images:
 - Pixels are localized in space.
 - Fourier are localized in frequency.
- Wavelets are a little of both.
- Good for measuring frequency locally.
Synthesis with this Representation (Bergen and Heeger)

Figure 2: (Left) Digitized sample: texture labeled mango wood. (Middle) Laplacian noise. (Right) Output synthetic texture that matches the appearance of the digitized sample. Note that the synthesized texture is larger than the digitized sample; our approach allows generation of as much texture as desired. In addition, the synthetic textures are seamlessly

Bergen and Heeger results

Figure 3: In each pair of images left image is original and right image is synthetic: stucco, indoor cliff, green marble, panda fur, dog nose, kidney eye wood.
Modeling Dependencies

• Pairwise dependencies
 – Co-occurrence of intensities at different distance/angles.
 – Covariance matrix of pixel and all nearby pixels.
Gabor vectors

• Compute Gabor vectors at (8) different orientations and (5) scales.
• Each image point -> a point in an 80 dimensional space (each Gabor output is complex).
• Compare histograms in 80D
 – This is hard part.
 – Dividing space into regular buckets doesn’t work.
 – Cluster points
 • Assign each point to a cluster
 • Implicitly, this partitions space more intelligently.
 – Compare using Chi-Squared or whatever you like.

Markov Model

• Captures local dependencies.
 – Each pixel depends on neighborhood.
• Example, 1D first order model

 \[P(p_1, p_2, \ldots, p_n) = \]

 \[P(p_1) \cdot P(p_2 | p_1) \cdot P(p_3 | p_2, p_1) \cdot \ldots \]

 \[= P(p_1) \cdot P(p_2 | p_1) \cdot P(p_3 | p_2) \cdot P(p_4 | p_3) \cdot \ldots \]
Markov model of Printed English

- From Shannon: “A mathematical theory of communication.”
- Think of text as a 1D texture
- Choose next letter at random, based on previous letters.

- Zero’th order:
 XFOML RXKHJFFJUJ ZLPWCFWKCYJ
 FFJEYVKCQSGHYD
 QPAAMKBZAACIBZIHJQD
• Zero’th order:
 XFOML RXKHJFFJUJ ZLPWCFWKCYJ
 FFJEMYVKCQSGHYD
 QPAAMKBZAACIBZIHJQD

• First order:
 OCRO HLI RGWR NMIELWIS EU LL
 NBNENESEBYA TH EEI ALHENHTTPA
 OOBTTVA NAH BRI

• Second order:
 ON IE ANTSOUTINYS ARE T
 INCTORE T BE S DEAMY ACHIN D
 ILONASIVE TUCOOWE AT
 TEASONARE FUSO TIZIN ANDY
 TOBE SEACE CTISBE
• Second order
ON IE ANTSOUTINYS ARE T
INCTORE T BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY
TOBE SEACE CTISBE

Third order:
IN NO IST LAT WHEY CRATICT FROURE
BIRS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE.

• Zero'th order: XFOML RXKHJFFJUJ
ZLPWCFWKCYJ FFJEYVKCQSGHYD
QPAAMKBZAACIBZIHJQD
• First order: OCRO HLI RGWR NMIELWIS EU
LL NBNESEBYA TH EEI ALHENHTTPA
OOBTTVA NAH BRI
• Second order ON IE ANTSOUTINYS ARE T
INCTORE T BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE
FUSO TIZIN ANDY TOBE SEACE CTISBE
• Third order: IN NO IST LAT WHEY CRATICT
FROURE BIRS GROCID PONDENOME OF
DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE.
Markov models of words

• First order:
 REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

• Second order:
 THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

Example 1st Order Markov Model

• Each pixel is like neighbor to left + noise with some probability.
• These capture a much wider range of phenomena.
There are dependencies in Filter Outputs

• Edge
 – Filter responds at one scale, often does at other scales.
 – Filter responds at one orientation, often doesn’t at orthogonal orientation.

• Synthesis using wavelets and Markov model for dependencies:
 – DeBonet and Viola
 – Portilla and Simoncelli
We can do this without filters

- Each pixel depends on neighbors.
 1. As you synthesize, look at neighbors.
 2. Look for similar neighborhood in sample texture.
 3. Copy pixel from that neighborhood.
 4. Continue.
Efros and Leung

This is like copying, but not just repetition
With Blocks

- Random placement of blocks
- Neighboring blocks constrained by overlap
- Minimal error boundary cut
Conclusions

- Model texture as generated from random process.
- Discriminate by seeing whether statistics of two processes seem the same.
- Synthesize by generating image with same statistics.
To Think About

- 3D effects
 - Shape: Tiger’s appearance depends on its shape.
 - Lighting: Bark looks different with light angle
- Given pictures of many chairs, can we generate a new chair?

Textons