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Transformations

Vectors

• Ordered set of 

numbers: (1,2,3,4)

• Example: (x,y,z) 

coordinates of pt in 
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Vector Addition
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Inner (dot) Product
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The inner product is a The inner product is a SCALAR!SCALAR!

αcos||||||||),).(,(. 2121 wvyyxxwv ⋅==

wvwv ⊥⇔= 0. 

First, we note that if we scale a vector, we scale its inner product.  That is, <sv,w> = 

s<v,w>.  This follows pretty directly from the definition.

This means that the statement <v,w> = ||v|| ||w|| cos(alpha) is true if and only if it is the 

case that when v and w are unit vectors, <v,w> = cos(alpha), because: 

<v,w> = <(v/||v||),(w/||w||)> ||v|| ||w||.  So from now on, we can assume that w, v are 

unit vector.  

Then, as an example, we can consider the case where w = (1,0).  It follows from the 

definition of cosine that <v,w> = cos(alpha).  We can also see that taking <v,(1,0)> and 

<v,(0,1)> produces the (x,y) coordinates of v.  That is, if (1,0) and (0,1) are an 

orthonormal basis, taking inner products with them gives the coordinates of a point 

relative to that basis.  This is why the inner product is so useful.  We just have to show 

that this is true for any orthonormal basis, not just (1,0) and (0,1).

How do we prove these properties of the inner product?  Let’s start with the fact that 

orthogonal vectors have 0 inner product.  Suppose one vector is (x,y), and WLOG 

x,y>0.  Then, if we rotate that by 90 degrees counterclockwise, we’ll get (y, -x).  

Rotating the vector is just like rotating the coordinate system in the opposite direction.  

And (x,y)*(y,-x) = xy – yx = 0.

Next, note that if w1 + w2 = w, then v*w = v*(w1+w2) = v*w1 + v*w2.  For any w, we 

can write it as the sum of w1+w2, where w1 is perpendicular to v, and w2 is in the 

same direction as v.  So v*w1 = 0.  v*w2 = ||w2||, since v*w2/||w2|| = 1.  Then, if we 

just draw a picture, we can see that cos alpha = ||w2|| = v*w2 = v*w.
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Inner product and direction

v

w

This tells us that if v is a unit vector (and w isn’t) that 

<v,w> = ||w|| cos(α).  This is the projection of w onto v.  It 
means that to get to w, we go a distance of <v,w> in the 

direction v, and then some distance in a direction orthogonal 

to v.

α

Matrices
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Matrices
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Euclidean transformations

2D Translation
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2D Translation Equation
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2D Translation using Matrices

PP

xx

yy

ttxx

ttyy

PP’’
tt

),(

),(

yx tt

yx

=

=

t

P
















⋅







=









+

+
→

1
1

0

0

1
' y

x

t

t

ty

tx

y

x

y

x
P

tt PP



8

Scaling

PP

PP’’

Scaling Equation
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Rotation
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Rotation Equations

CounterCounter--clockwise rotation by an angle clockwise rotation by an angle θθ
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Why does multiplying points by R rotate them?

• Think of the rows of R as a new coordinate system.  

Taking inner products of each points with these expresses 

that point in that coordinate system.  

• This means rows of R must be orthonormal vectors 

(orthogonal unit vectors).

• Think of what happens to the points (1,0) and (0,1).  They 

go to (cos theta, -sin theta), and (sin theta, cos theta).  They 

remain orthonormal, and rotate clockwise by theta.

• Any other point, (a,b) can be thought of as a(1,0) + 

b(0,1).  R(a(1,0)+b(0,1) = Ra(1,0) + Ra(0,1) = aR(1,0) + 

bR(0,1).    So it’s in the same position relative to the 

rotated coordinates that it was in before rotation relative 

to the x, y coordinates.  That is, it’s rotated.

Degrees of Freedom

R is 2x2 R is 2x2 4 elements4 elements

BUT! There is only 1 degree of freedom: BUT! There is only 1 degree of freedom: θθ
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Transformations can be 

composed

• Matrix multiplication is associative.

• Combine series of transformations into 

one matrix. 

• In general, the order matters. 

• 2D Rotations can be interchanged.  

Why?

Rotation and Translation
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Inverse of a rotation

• If R is a rotation, RRT = I.

– This is because the diagonals of RRT are the 

magnitudes of the rows, which are all 1, because 

the rows are unit vectors giving directions.  

– The off-diagonals are the inner product of 

orthogonal unit vectors, which are zero.

• So the transpose of R is its inverse, a rotation 

of equal magnitude in the opposite direction. 

Stretching Equation
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Stretching = tilting and projecting

(with weak perspective)
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Linear Transformation

















−

⋅

























−

=









⋅







−














−

=









⋅







→

y

x
s

s

s

y

x

s

s

y

x

dc

ba

y

x

y

y

x

ϕϕ
ϕϕ

θθ
θθ

ϕϕ
ϕϕ

θθ
θθ

sincos

cossin

10

0

sincos

cossin

sincos

cossin

0

0

sincos

cossin

'P
SVD



14

Affine Transformation
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This is equivalent to stretching by an arbitrary 

amount in an arbitrary direction, and translating.

Solving for Transformation
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