
Clustering Color/Intensity

Group together pixels of similar color/intensity.



Agglomerative Clustering

• Cluster = connected pixels with similar 
color.

• Optimal decomposition may be hard.
– For example, find k connected components 

of image with least color variation.

• Greedy algorithm to make this fast.



Clustering Algorithm

• Initialize: Each pixel is a region with color of 
that pixel and neighbors = neighboring pixels.

• Loop
– Find adjacent two regions with most similar color.
– Merge to form new region with:

• all pixels of these regions
• average color of these regions.
• All neighbors of either region.

– Stopping condition:
• No regions similar
• Find k regions.
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Clustering complexity

• n pixels.
• Initializing: 

– O(n) time to compute regions.

• Loop:
– O(n) time to find closest neighbors (could speed 

up).
– O(n) time to update distance to all neighbors.

• At most n times through loop so O(n*n) time 
total.



Agglomerative Clustering: 
Discussion

• Start with definition of good clusters.

• Simple initialization.
• Greedy: take steps that seem to most 

improve clustering.
• This is a very general, reasonable strategy.
• Can be applied to almost any problem.

• But, not guaranteed to produce good quality 
answer.



Parametric Clustering

• Each cluster has a mean color/intensity, 
and a radius of possible colors.

• For intensity, this is just dividing 
histogram into regions.

• For color, like grouping 3D points into 
spheres.



K-means clustering

• Brute force difficult because many spheres, many 
pixels.

• Assume all spheres same radius; just need sphere 
centers.

• Iterative method.
– If we knew centers, it would be easy to assign pixels to 

clusters.
– If we knew which pixels in each cluster, it would be easy to 

find centers.
– So guess centers, assign pixels to clusters, pick centers for 

clusters, assign pixels to clusters, ….
– matlab



Why is this better?

• With a greedy algorithm, once we make 
a decision we cannot undo it.

• With an iterative algorithm, we can 
make changes.



K-means Algorithm

1. Initialize – Pick k random cluster centers
– Pick centers near data.  Heuristics: uniform 

distribution in range of data; randomly select 
data points.

2. Assign each point to nearest center.
3. Make each center average of pts assigned 

to it.

4. Go to step 2.



Let’s consider a simple example.  Suppose we 
want to cluster black and white intensities, and we 
have the intensities: 1 3 8 11.  Suppose we start 
with centers c1 = 7 and c2=10.  We assign 1, 3, 8 
to c1, 11 to c2.  Then we update c1 = (1+3+8)/3 = 
4, c2 = 11.  Then we assign 1,3 to c1 and 8 and 11 
to c2.  Then we update c1 = 2, c2 = 9 ½.  Then the 
algorithm has converged.  No assignments 
change, so the centers don’t change.



K-means Properties

• We can think of this as trying to find the optimal 
solution to:
– Given points p1… pn, find centers c1…ck
– and find mapping f:{p1…pn}->{c1…ck}
– that minimizes C = (p1-f(p1))^2 + …+ (pn-f(pn))^2.

• Every step reduces C.
– The mean is the pt that minimizes sum of squared distance 

to a set of points. So changing the center to be the mean 
reduces this distance.

– When we reassign a point to a closer center, we reduce its 
distance to its cluster center.

• Convergence: since there are only a finite set of 
possible assignments.



Local Minima

• However, algorithm might not find the best 
possible assignments and centers.

• Consider points 0, 20, 32.
– K-means can converge to centers at 10, 32.
– Or to centers at 0, 26.  

• Heuristic solutions
– Start with many random starting points and pick 

the best solution.



E-M

• Like K-means with 
soft assignment.
– Assign point partly to 

all clusters based on 
probability it belongs 
to each.

– Compute weighted 
averages (cj) and 
variance (σ).
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Cluster centers are cj.  



Example

• Matlab: tutorial2
• Fuzzy assignment allows cluster to 

creep towards nearby points and 
capture them.



E-M/K-Means domains

• Used color/intensity as example.
• But same methods can be applied 

whenever a group is described by 
parameters and distances.

• Lines (circles, ellipses); independent 
motions; textures (a little harder).


