Clustering Color/Intensity

Group together pixels of similar color/intensity.

Agglomerative Clustering

- Cluster = connected pixels with similar color.
- Optimal decomposition may be hard.
 - For example, find k connected components of image with least color variation.
- Greedy algorithm to make this fast.

Clustering Algorithm

- Initialize: Each pixel is a region with color of that pixel and neighbors = neighboring pixels.
- Loop
 - Find adjacent two regions with most similar color.
 - Merge to form new region with:
 - all pixels of these regions
 - average color of these regions.
 - All neighbors of either region.
 - Stopping condition:
 - No regions similar
 - Find *k* regions.

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24.5	24.5	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24.33	24.33	24.33
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24.33	24.33	24.33
19. 5	19 .5	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

23	25	19	21	23
18	22	24.33	24.33	24.33
19. 5	19 .5	26	28	22
3	3	7.5	7.5	26
1	3	5	4	24

. . .

23	25	19	21	23
18	22	24	25	24
20	19	26	28	22
3	3	7	8	26
1	3	5	4	24

22. 9	22 .9	22.9	22.9	22.9
22. 9	22 .9	22.9	22.9	22.9
22. 9	22 .9	22.9	22.9	22.9
4.2 5	4. 25	4.25	4.25	22.9
4.2 5	4. 25	4.25	4.25	22.9

Clustering complexity

- n pixels.
- Initializing:
 - O(n) time to compute regions.
- Loop:
 - O(n) time to find closest neighbors (could speed up).
 - O(n) time to update distance to all neighbors.
- At most n times through loop so O(n*n) time total.

Agglomerative Clustering: Discussion

- Start with definition of good clusters.
- Simple initialization.
- Greedy: take steps that seem to most improve clustering.
- This is a very general, reasonable strategy.
- Can be applied to almost any problem.
- But, not guaranteed to produce good quality answer.

Parametric Clustering

- Each cluster has a mean color/intensity, and a radius of possible colors.
- For intensity, this is just dividing histogram into regions.
- For color, like grouping 3D points into spheres.

K-means clustering

- Brute force difficult because many spheres, many pixels.
- Assume all spheres same radius; just need sphere centers.
- Iterative method.
 - If we knew centers, it would be easy to assign pixels to clusters.
 - If we knew which pixels in each cluster, it would be easy to find centers.
 - So guess centers, assign pixels to clusters, pick centers for clusters, assign pixels to clusters,
 - matlab

Why is this better?

- With a greedy algorithm, once we make a decision we cannot undo it.
- With an iterative algorithm, we can make changes.

K-means Algorithm

- 1. Initialize Pick k random cluster centers
 - Pick centers *near* data. Heuristics: uniform distribution in range of data; randomly select data points.
- 2. Assign each point to nearest center.
- Make each center average of pts assigned to it.
- 4. Go to step 2.

Let's consider a simple example. Suppose we want to cluster black and white intensities, and we have the intensities: 1 3 8 11. Suppose we start with centers c1 = 7 and c2=10. We assign 1, 3, 8 to c1, 11 to c2. Then we update c1 = (1+3+8)/3 = 4, c2 = 11. Then we assign 1,3 to c1 and 8 and 11 to c2. Then we update c1 = 2, $c2 = 9 \frac{1}{2}$. Then the algorithm has converged. No assignments change, so the centers don't change.

K-means Properties

- We can think of this as trying to find the optimal solution to:
 - Given points p1... pn, find centers c1...ck
 - and find mapping f:{p1...pn}->{c1...ck}
 - that minimizes $C = (p1-f(p1))^2 + ... + (pn-f(pn))^2$.
- Every step reduces C.
 - The mean is the pt that minimizes sum of squared distance to a set of points. So changing the center to be the mean reduces this distance.
 - When we reassign a point to a closer center, we reduce its distance to its cluster center.
- Convergence: since there are only a finite set of possible assignments.

Local Minima

- However, algorithm might not find the best possible assignments and centers.
- Consider points 0, 20, 32.
 - K-means can converge to centers at 10, 32.
 - Or to centers at 0, 26.
- Heuristic solutions
 - Start with many random starting points and pick the best solution.

E-M

- Like K-means with soft assignment.
 - Assign point partly to all clusters based on probability it belongs to each.
 - Compute weighted averages (c_j) and variance (σ).

$$f_{j}(p_{i}) = \frac{e^{-\|p_{i}-c_{j}\|_{\sigma^{2}}^{2}}}{\sum_{j} e^{-\|p_{i}-c_{j}\|_{\sigma^{2}}^{2}}}$$

Cluster centers are c_j.

- Matlab: tutorial2
- Fuzzy assignment allows cluster to creep towards nearby points and capture them.

E-M/K-Means domains

- Used color/intensity as example.
- But same methods can be applied whenever a group is described by parameters and distances.
- Lines (circles, ellipses); independent motions; textures (a little harder).