Lighting affects appearance
Photometric Stereo: using this variability to reconstruct

Albedos ➔ Shape (normals only)
Recognition: Accounting for this variability in matching

Basics: How do we represent light? (1)

- Ideal distant point source:
 - No cast shadows
 - Light distant
 - Three parameters
 - Example: lab with controlled light
Basics: How do we represent light? (2)

- Environment map: \(f(\theta, \phi) \)
 - Light from all directions
 - Diffuse or point sources
 - Still distant
 - Still no cast shadows.
 - Example: outdoors (sky and sun)
Basics

- How do objects reflect light?
- Lambertian reflectance

$\lambda_{\text{max}} (\cos \theta, 0)$

Reflectance map

- Reflected light is function of surface normal: $i = f(\theta, \phi)$
- Suitable for environment map.
- Can be measured with calibration object.
Photometric stereo

- Given reflectance map:
 \(i = f(\theta, \phi) \) each image constrains normal to one degree of freedom.
- Given multiple images, solve at each point.

Lambertian + Point Source

\[\vec{l} = l \cdot \vec{l} \]

- \(\vec{l} \) is direction of light
- \(l \) is intensity of light
- \(i = \max(0, \lambda(\vec{l} \cdot \hat{n})) \)
- \(i \) is radiance
- \(\lambda \) is albedo
- \(\hat{n} \) is surface normal
Lambertian, point sources, no shadows. (Shashua, Moses)

- *Whiteboard*
- Solution linear
- Linear ambiguity in recovering scaled normals
- Lighting, reflectance map not known.
- Recognition by linear combinations.

Linear basis for lighting

\[
\lambda Z \quad \lambda X \quad \lambda Y
\]
Integrability

- Means we can write height: $z=f(x,y)$.
- *Whiteboard*
- Reduces ambiguity to bas-relief ambiguity.
- Also useful in shape-from-shading and other photometric stereo.

Bas-relief Ambiguity
Shadows

With Shadows: Empirical Study

(Epstein, Hallinan and Yuille; see also Hallinan; Belhumeur and Kriegman)

<table>
<thead>
<tr>
<th></th>
<th>Ball</th>
<th>Face</th>
<th>Phone</th>
<th>Parrot</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>48.2</td>
<td>53.7</td>
<td>67.9</td>
<td>42.8</td>
</tr>
<tr>
<td>#3</td>
<td>94.4</td>
<td>90.2</td>
<td>88.2</td>
<td>76.3</td>
</tr>
<tr>
<td>#5</td>
<td>97.9</td>
<td>93.5</td>
<td>94.1</td>
<td>84.7</td>
</tr>
<tr>
<td>#7</td>
<td>99.1</td>
<td>95.3</td>
<td>96.3</td>
<td>88.5</td>
</tr>
<tr>
<td>#9</td>
<td>99.5</td>
<td>96.3</td>
<td>97.2</td>
<td>90.7</td>
</tr>
</tbody>
</table>

Dimension: $5 \pm 2D$
Attached Shadows

- Lambertian
- Environment map

\[n \] \[l \] \[\theta \] \[\lambda_{\text{max}} \] \[(\cos \theta, 0) \]

Images

Lighting

Reflectance

Images

...
Lighting to Reflectance: Intuition
Forming Harmonic Images

$$b_{nm}(p) = \lambda r_{nm}(X,Y,Z)$$

- λ
- λZ
- λX
- λY
- $2\lambda(Z^2 - X^2 - Y^2)$
- $\lambda(X^2 - Y^2)$
- λXY
- λXZ
- λYZ
Models

Find Pose

Query

Compare

Vector: I

Harmonic Images

Matrix: B

Experiments

- 3-D Models of 42 faces acquired with scanner.
- 30 query images for each of 10 faces (300 images).
- Pose automatically computed using manually selected features (Blicher and Roy).
- Best lighting found for each model; best fitting model wins.
Results

- 9D Linear Method: 90% correct.
- 9D Non-negative light: 88% correct.
- Ongoing work: Most errors seem due to pose problems. With better poses, results seem near 97%.
Summary

- Linear solutions are good.
- For pose variation with points, each image is linear combination of 2 others.
- For Lambertian lighting no shadows, each image is linear combination of 3.
- With attached shadows, linear combination of 9.
- Only diffuse lighting affects images, unless there are shadows or specularities.