Class Notes CMSC 427
3D Geometry and Projection

Introduction

One of the main goals of graphics is to turn representations of the 3D world into 2D
images. To do this, we have to discuss geometry. We need to understand how to
represent geometric objects in 3D and 2D, and we need to understand the relationship
between the 3D world and a 2D image. This note will cover three topics: representation
of planes, points and lines; perspective projection that relates the 3D and 2D positions of
these objects; and intersections of these objects as well as the process of finding lines or
planes that include multiple lines and points.

Representation

In this class we will mostly consider the simplest geometric objects: points, lines and
planes. This is the minimal set of objects that we can consider. Points are the simplest of
objects, we must understand lines because light goes in a straight line, and we must
understand planes, because the image is a plane. However, these simple objects are also
very important, and much work in vision is done using just this set of objects.

Points: First, we recall that we represent a point by its coordinates in space. If a point is
in 2D, we describe it with x and y coordinates. We will describe points using lower case
letters, so we might write p=(x,y). If a point is in 3D we also need a z coordinate, and we
use upper case letters, so we could write P=(x,),z).

2D Lines: Lines already become a little more complicated. There are several ways of
representing lines, each with their own advantages and disadvantages.

In 2D we can represent a line with a single, linear equation, of the form: ax+by+c=0.

Here, a, b, and ¢, are constant values that determine the line. A point (xg,)) is on this
line if the equation is satisfied when we plug in these values for x and y. We can get a
useful intuition by rewriting this equation in the following way:
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That is, we can create a unit vector, (a’,b’). Then a point is on a line if the inner product
between the point and (a’,b’) is equal to some constant value, ¢’. Keeping in mind that
the inner product between (x,y) and (a’,b’) measures the distance from (x,y) to the origin
in the direction of (a’,b’), we have the following picture.




(a’,b”)

When we describe a line like this, the vector (a’,b’) will be orthogonal to the line.

Also, it is also useful to recall another way of describing a line, with the equation:
y = mx+b. When we describe a line like this, m, is the slope of the line.

There is still one more way of describing a line. We can write down a recipe for reaching
any point on a line by starting at one point of the line, say (x4,)), and then moving some
distance ¢, in the direction of the line. If we describe the direction of the line with a unit
vector, (u,v), then we can write this down by saying that (x,y) is on the line if it satisfies
the equation:
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Notice that this is really two equations, one for the x component of the point, and one for
the y component, and these equations are linear in three unknowns, x, y, and .
Previously, we had described a line with one linear equation and two unknowns. We can
convert between these two representations by using one equation to eliminate #; then we
would obtain one linear equation in two unknowns.

Planes: Before, we consider how to represent a line in 3D, it’s useful to look at a 2D
plane in 3D. First, let’s take an example. Suppose we want to represent the floor of a
room. We can say that these are all the points that have a height of zero. If we use the y
coordinate to represent height, we can represent this plane with the equation: y=0. Note
that this is a linear equation in x, y, and z, although x and z don’t happen to actually show
up in the equation, since they points on the floor can have any values for x and z. More
generally, we can describe any plane with a linear equation of the form:
Ax+By+Cz+D=0.



Just as in 2D, we can rewrite this equation by coming up with a unit vector, (4,B’,C’) =
(4,B,C)/||(4,B,C). Then, we can say a point (x,),z) is on the plane if it satisfies the
equation:

(x,y,z)*(4,B,C")=D'

where D’=-D/||(4,B,C)||. Thatis, a plane is a set of points whose inner products with a
specific unit vector are all the same. Or, to put it another way, we get to a point on a
plane by going a distance D in the direction (4°,B°,C’) and then going in any direction
orthogonal to (4’,B°,C’) by whatever amount we want. In this case, (4°,B’,C’) is the
vector normal to the plane.

Let’s look at our equation for the floor, y=0, from this point of view. This equation can
also be written: (x,),z).(0,1,0)=0. This says that the floor is the set of all points whose
distance from the origin, in the y direction, is 0.

3D Lines: Now we will consider how to represent a line in 3D. One way to do this is to
note when two planes intersect, they intersect in a line. If we want to represent a point as
lying in the intersection of two planes, we can say that the point must satisfy two
equations, one for each plane, so that it lies inside both planes. So we can represent a line
by saying that a point (x,y,z) is on a line if it satisfies the equations:

Ax+By+Cz+D =0 Ax+By+C,z+D, =0

A second useful way to represent a line, as we did in 2D is to give a starting point, and a
direction, indicating that we can reach any point on the line by going some distance in
that direction. That is, we can write:

(x,y,z) = (XODyO’ZO)'l_t(u’VaW)

Here, (x9,y0,z¢) is any point on the line, and (u,v,w) is a unit vector indicating the direction
in which the line extends. As 7 varies, the right hand side of the above equation can
represent the location of any point on the line. We can note that the above equation is
really three equations, one for each component of the point, with four unknowns, x, y, z,
and «. In contrast the first representation expresses a line as two equations with three
unknowns.

Intersections and Linear Combinations

We now launch into a discussion of how to find the intersection of lines and planes, and
how to find the linear space (ie., a line or a plane) that include several geometric objects
(eg., finding a line that includes two points, or a plane that includes three). These
operations are central to many vision tasks, as we will see. For example, light travels in a
straight line. An image is a plane. If we want to know where a ray of light will appear in
an image, we must know how to find the intersection of a line and a plane.



Intersecting lines and planes: We have shown how to represent lines and planes with a
set of linear equations. When we intersect these objects, this means that for any point in
the intersection, all these equations should hold. Therefore, we can represent this
intersection simply by listing the equations that hold. For example, suppose we want to
intersect a line and a plane. Suppose further that the line is represented by the two
equations: Ajx + By + Ciz+ D; = 0 and Axx + By + Coz+ D, = 0, while the plane is
represented by the equation Asx + B3y + Csz + D3 = 0. The intersection of a line and a
plane is the set of points that satisfies all three of these equations. One might have the
intuition that a line and a plane intersect in a single point, so only one point will satisfy
these equations. Or one might note that three linear equations with three unknowns will
generally have only one solution, which is the single point that satisfies these equations.
It is also possible for these equations to have no solution, which is what happens if the
line is parallel to the plane, and never intersects it.

Sometimes it is more convenient to do this intersection using the equation for a line:
(x,v,z) = (X0,y0,20) + t(u,v,w). Suppose the equation for the plane that this line intersects
is: Ax+By+Cz+D=0. Then we have four equations with four unknowns to solve. But
these have a nice form, since three of the equations give x, y, and z on one side, and linear
expressions containing no unknowns but 7 on the other. So we can substitute, and get the
equation: A(xp+ tu) + B(yp+tv) + C(zp+tw) + D = (. We can then solve this equation for
t, and substitute this value into our equation for the line to get (x,),z).

As an example, suppose we have a line with the equation (x,y,z) = (1,2,3) + ¢(1,1,1), and
we want to intersect it with a plane that has the equation 2x+y+2z+/=0. Substituting, we
get: 2(t+1)+(t+2)+2(t+3)+1=0. This gives us: 5¢t+11=0, t =-11/5. So we then have:
(xvz) = (1,2,3)-(11/5,11/5,11/5).

Finding a line containing two points: We may also wish to find the equation for a line
that contains two points. In 2D, we can do this by taking the equation for a line,
y=mx+b, and treating m and b as the unknowns. Then, for each point we can substitute
in the values of x and y, giving us two equations with the unknowns m and b. Notice that
this will work except for the case of a vertical line, which cannot be described by y = mx
+ b, since it has infinite slope. We would need to check for this case separately.

Here’s another way to get an equation for a line from two points. Suppose we have
points p and q. We can write p + #(p-q). Here p serves as an example of a point on the
line, while (p-g) is a vector in the direction of the line. Note that this works in two or
three dimensions.

Finding a plane containing three points, or a point and a line

Just as two points determine a line, three points determine a plane. There are several
ways of finding the plane from three points. For example, similar to what we did with a
line, we can write the equation for a plane as Z = AX + BY + D. Then we can use the
(X, Y,Z) values for each point to get a linear equation in 4, B, and D. Notice that this
approach also doesn’t work for some cases, which we must handle separately.



If we want to form a plane from a point and a line, one way to do this is to just pick two
points from the line, and then use the above method.

For those of you who are familiar with the cross-product, we note that given points P;,

P, and P;, we can find a vector normal to the plane of the three points by taking (P- -
P)x(P; - P;), where x is the cross-product operation. If we express a plane with the
equation: AX+BY+CZ+D = 0 this gives us (4,B,C). We can use the coordinates of any
of the points to solve for D. We won’t go into this method in detail, though, because we
will try to stick with problems in which finding the plane formed by points, or a point and
a line, is easy.

Perspective Projection

We now have the tools that we need to begin to solve some vision problems. We begin
by describing the process of perspective projection. The key question that we must
address is, given a description of the camera position and the location of a 3D point,
where will this point appear in the image?

With perspective projection, we describe a camera using a focal point and an image
plane. We imagine that light travels in a straight line from a scene point towards the
focal point. The location where the light ray intersects the image plane is the image
location for this scene point. In a pinhole camera, the focal point is the pinhole, and the
light passes through it on the way to the image plane, which might be a CCD, or film. In
our idealization of a pinhole camera, the image plane is in front of the pinhole, so the
light strikes the image plane before it reaches the focal point. Either way, we can find the
image point by forming a line that includes the scene point and the focal point, and
finding where it intersects the image plane. We have explained above how to perform
these operations, so this tells us how to find the image point corresponding to a scene
point, for a general camera position.

As an example, suppose we have a camera with a focal point at (7,2,3), with an image
plane at the x=2 plane, and we wish to find the image produced by a point in the scene at
the location (9,6,5). We can describe the line that joins the scene point to the focal point
with the equation: (x,y,z) = (1,2,3) + ¢(8,4,2). x =1 + 8t, and we want find the point
where this intersects the x=2 plane, (ie., the point on the line that has x = 2). This occurs
when 2 = [ + 8¢, or when ¢ = 1/8. The point on the line for = 1/8 is (2, 2.5, 3.25).
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We will often consider a special camera set-up (see figure above) which makes it much
easier to compute the image points produced by scene points. This is the case in which
the focal point is at the origin, and the image plane is the z=fplane, where f'is called the
focal length of the camera. Suppose now we have a scene point P, with coordinates
(X,Y,Z), which produces an image point, p. p has coordinates (x,y), or alternately we can
think of it as a 3D point on the image plane, with coordinates (x,y,f). We notice that there
are two similar triangles, one with corners at (0,0,0), (X,Y,Z), and (0,0,Z) (this is the
triangle above that is light gray, including also the dark gray triangle and its tip) and the
other with corners at (0,0,0), (x,y.f), and (0,0,f) (the dark gray triangle). The first of these
triangles is the same as the second one, but scaled by a factor of Z/f. This means that the
side of the big triangle with corners (0,0,0) and (X,Y,Z) is the same as the side with
corners at (0,0,0) and (x,y,f), but scaled by a factor of Z/f. This tells us that (Z/f)(x,y) =
(X,Y), which implies that

(x.)=fX/Z, Y/2).
This is the basic equation of perspective projection.
The vanishing point and the horizon

We can now derive some basic facts about perspective projection. The first is that any
point in front of the camera will project to a point in the image plane. The scene point
and the focal point form a line that will intersect the image plane in a single point. When
we say that a point is in front of the camera, we mean that the image plane separates the
scene point and the focal point, so that the line segment connecting the two points will
intersect the image plane.



If a line is in front of the camera, it will generally project to a line in the image plane.
Every scene point on the line will project into the image along a line connecting it to the
focal point. Collectively, all these projection lines connect the scene line to the focal
point, forming the plane that includes the scene line and the focal point. In general, this
plane will intersect the image plane in a line.

There are two special cases to consider, though. We’ll discuss one below. Here we
mention the case in which the scene line includes the focal point. In this case, all lines of
projection that connect a point on the scene line to the focal point are, in fact, identical to
the scene line. Since all of these lines are identical, they all intersect the image plane in
the same point. One can visualize this by imagining one is looking at a line end-on, so
that it looks like just a point.

In general, a scene plane can fill the entire image. Given any image point, this point
forms a line with the focal point, which will intersect the scene plane. This point on the
scene plane, then, will project to the image at this image point.

An interesting special case occurs, though, if the scene plane is orthogonal to the image
plane. An important example of this is when the scene plane is the ground, and the
camera is pointing in a horizontal direction. We can describe such a situation with a
camera that has a focal point at (0,0,0) and an image plane of z=1, and with a ground
plane described by y=-k. In this case, the y direction is down, and £ is the height of the
camera’s focal point above the ground. Now, let’s consider the projection of a point on
the ground. A point on the ground has coordinates (x, -k, z), for any arbitrary values of x
and z. If the point is in front of the camera, then z > /. Using the equation of projection,
the image of this point will be (x/z, -k/z). This could be any location in the image, except
that —&/z is always negative, so this point must always be in the bottom half of the image.
The image of the plane occupies all points with negative y coordinates, up to the line y=0,
which is called the horizon. Of course this accords with our experience that when we
look at the world in a direction parallel to the ground, the ground is always in the bottom
half of the image. It does not fill up the whole image. More generally, similar reasoning
shows that when we look at any plane that is orthogonal to the image plane, the points in
that plane will fill up half of the image.

There is one last special case, that occurs when a scene plane is situated so that the focal
point lies in the same plane. In this case, every line that connects a point in the scene
plane to the focal point lies in this plane. This plane intersects the image plane in a line,
so the images of all points in the scene plane lie along a line in the image. This is what
happens, for example, when you look at a sheet of paper end-on, so that it looks like a
thin line.

Now let’s consider what happens when a scene line is orthogonal to the image plane, for

example, a line that lies on the ground plane. We can describe a line on the ground plane
with the equation:

(%, ¥,2) = (X4, Y4,2¢) + 1(u,0,w)



The zero ensures that this point will always stay in the y=yy plane. If we’re talking about
the ground plane, we would generally expect y to be less than 0. We can use the
equations of projection to find the image of a point on this line, which will be:

X, +tu Yy,
Z, +tw’z0 +tw

Now, let’s look at what happens to with images of points on the line when they get very
far from the camera. If we assume that w is positive, then as ¢ gets very big, the z
coordinate of a point on the line, zy + tw, will also get very big, meaning the point is very
far from the camera. First let’s look at the y coordinate of the image of such a point. It is
equal to (yo/(zo+tw)). As t gets very big, the denominator gets very big, while the
numerator stays the same. In the limit, as ¢ goes to infinity, then, the y coordinate goes to
zero. For the x coordinate, as ¢ goes to infinity, xy and z, become insignificant relative to
tu and tw. Therefore, the x coordinate of the image point goes to u/w. This means that
the line appears to approach the point on the horizon (u/w,0) as it vanishes in the distance.
This point is called the vanishing point of the line.

It is interesting to note that if two lines are parallel, they have the same vanishing point.
A line will be parallel to the one we describe above if it has the equation:

(x,y,z) = (xlﬂyO’Zl)-I_t(u’O’W)

We describe this line with a starting point that is different from the first line (though still
in the y=yy plane. But, if the lines are parallel, they must go in the same direction,

(u,0,w). By the same reasoning as above, the vanishing point of this line will also be
(u/w,0).

Another line, which is not parallel to these, will go in a different direction, and its
vanishing point will have a different x coordinate. But notice that all lines in the plane
have vanishing points on the horizon, that is, with y=0. Again, this is in line with our
everyday experience. When we look at a long line, like a railroad track, that seems to
vanish into the distance, the line seems to rise up to the horizon as it vanishes.

Locating an image point in a scene

For ray tracing, we will be interested in using our understanding of perspective to
perform the inverse operation, to locate a point in the scene using our knowledge of its
location in one image.

From one image: When we see a point, p, in only one image, we cannot determine its
exact location. There is a whole line in the world that could have produced the image
point. This is the line that includes the image point and the focal point. Call this line L.
If we take any scene point, P, on L, since L includes both P and the focal point, this is the



line of light traveling from the P to the focal point. Since L intersects the image plane at
p, this will be the image of P. Therefore, L, describes exactly the set of points that might
have produced p.

From one image when the point is on a known plane: If we have some prior
knowledge of the scene, it is possible that we can determine the 3D location of a point
from a single image. In particular, if we now that we’re looking at points on a known
plane, such as the ground plane, then a single image specifies a line that a particular point
lies on, and this line will intersect this plane at a point.

As an example, let’s suppose that we have a camera with a focal point at (0,0,0), and an
image plane at z=/. We are looking at a point that we know is on the ground plane,
y=-10. The point that we are looking at appears in the image at (3, -5). We can write an
equation that gives us a line that this point must lie in, as: (0,0,0)+¢(3,-5,1). To intersect
this with the y=-10 plane, we must find 0-5¢ = -10. So, ¢t = 2 and we find that the point is
at (0,0,0)+2(3,-5,1) = (6, -10, 2).



