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The Inner Product
(Many slides adapted from Octavia Camps and Amitabh 

Varshney)

Much of material in Appendix A

Goals

• Remember the inner product
• See that it represents distance in a 

specific direction.
• Use this to represent lines and planes.
• Use this to represent half-spaces.
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Vectors

• Ordered set of 
numbers: (1,2,3,4)

• Example: (x,y,z) 
coordinates of pt in 
space. runit vecto a is  ,1 If
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Vector Addition
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Scalar Product
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The inner product is a The inner product is a SCALAR!SCALAR!
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First, we note that if we scale a vector, we scale its inner product.  That is, <sv,w> = 
s<v,w>.  This follows pretty directly from the definition.

This means that the statement <v,w> = ||v|| ||w|| cos(alpha) is true if and only if it is the 
case that when v and w are unit vectors, <v,w> = cos(alpha), because: 

<v,w> = <(v/||v||),(w/||w||)> ||v|| ||w||.  So from now on, we can assume that w, v are 
unit vector.  

Then, as an example, we can consider the case where w = (1,0).  It follows from the 
definition of cosine that <v,w> = cos(alpha).  We can also see that taking <v,(1,0)> and 
<v,(0,1)> produces the (x,y) coordinates of v.  That is, if (1,0) and (0,1) are an 
orthonormal basis, taking inner products with them gives the coordinates of a point 
relative to that basis.  This is why the inner product is so useful.  We just have to show 
that this is true for any orthonormal basis, not just (1,0) and (0,1).

How do we prove these properties of the inner product?  Let’s start with the fact that 
orthogonal vectors have 0 inner product.  Suppose one vector is (x,y), and WLOG 
x,y>0.  Then, if we rotate that by 90 degrees counterclockwise, we’ll get (y, -x).  
Rotating the vector is just like rotating the coordinate system in the opposite direction.  
And (x,y)*(y,-x) = xy – yx = 0.

Next, note that if w1 + w2 = w, then v*w = v*(w1+w2) = v*w1 + v*w2.  For any w, we 
can write it as the sum of w1+w2, where w1 is perpendicular to v, and w2 is in the 
same direction as v.  So v*w1 = 0.  v*w2 = ||w2||, since v*w2/||w2|| = 1.  Then, if we 
just draw a picture, we can see that cos alpha = ||w2|| = v*w2 = v*w.

Inner product and direction

v

w

This tells us that if v is a unit vector (and w isn’t) that 

<v,w> = ||w|| cos��� � This is the projection of w onto v.  It 
means that to get to w, we go a distance of <v,w> in the 
direction v, and then some distance in a direction orthogonal 
to v.

�
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2D Lines

v cv

Consider any line.  
Suppose v=(a,b) is a 
unit vector in the 
direction orthogonal 
to it.  Then we can 
describe any point, 
p=(x,y), on the line 
by saying we go a 
fixed distance c in 
the direction v, and 
then some distance 
orthogonal to v.  So, 
<v,p> = c and the 
equation for a line is: 
ax+by=c

p
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2D Half-spaces

v cv

A line divides the 
plane in two 
halves.  If we go 
less than c in the 
direction v, we 
are in one half-
space.  More 
than c, we cross 
the line and 
enter the other 
half space.  So a 
half-space is 
defined by: 
ax+by < c
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Implicit Equation of a Plane

n
dn

Likewise, we 
reach any point in 
a plane by going a 
distance d in a 
direction n=(a,b,c)
that is 
perpendicular to it, 
and then moving 
within the plane.  n 
is orthogonal to 
any vector in the 
plane.
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Normal of a Plane
Plane: sum of a point and two vectors
P = P1 + � �u + � �v
P - P1 = � �u + � �v

If �n is orthogonal to �u and �v (n = �u � �v ) :�n T 	 

P - P1) = � �n 

T 	 �u + � �n 
T 	 �v = 0

P1 �u
�v

�uP1

�v�n
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The Cross-Product

• (a,b,c)x(d,e,f) = (bf-ce, cd – af, ae-bd)
• Verify <(a,b,c)x(d,e,f), (a,b,c)> = 
(abf-ace+bcd-baf+cae-cbd) = 0.  
• Similar for <(a,b,c)x(d,e,f), (d,e,f)> 
• Direction obeys right-hand rule.
• Length v x w = ||v|| ||w|| sin���

3D Half-spaces

• Similar to 2D with lines.
• Plane divides space into two parts.  
• In one part, we go less than d in 

direction n, in other part we go more 
than d.

• ax + by + cd < d, ax + by + cz > d
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3D Lines

• There are two direction orthogonal to line.
• Move some amount in each direction to get to line, 

then any amount in 3rd direction orthogonal to both of 
these.

• a1x + b1y + c1z = d1 & a2x + b2y + c2z = d2  (Two 
equations with three unknowns).

• Equivalently, a line is the intersection of two planes.
• Or: start at some point, p=(x0,y0,z0), on the line, and 

move in the tangent direction (a,b,c) by some 
distance t:  

(x,y,z) = (x0, y0, z0) + t(a,b,c) (Three equations with 
four unknowns.

Points

Using these facts, we can represent points.  
Note:

(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1)

x = (x,y,z).(1,0,0)     y = (x,y,z).(0,1,0)

z = (x,y,z).(0,0,1)


