
Problem Set 2 
CMSC 427 

Distributed Thursday, February 20, 2005 
Due: Tuesday, March 6, 2005 

 
Collisions, Intersections, Perspective and More Transformations 
 
Programming 
 
An executable for the finished version of this problem set is available on the class web 
page.  You can obtain code that satisfies the conditions of problem set 1 by sending email 
to djacobs@cs.umd.edu (I’d prefer not to post it on the web).  You can use this as a 
starting point, or you can use your own implementation of PS 1 to start.  This code, and 
perhaps yours, handles the somersault.  However, in this problem set, you don’t need to 
worry about getting everything to interact properly with the somersault, in fact, feel free 
to delete the somersault. 
 
I have added a few features in the executable that you are not required to implement.  
These include some print statements to indicate speed and intersections, and keyboard 
functions for ‘d’, ‘e’, ‘r’, and ‘t’.  I found these helpful for debugging purposes and you 
might find similar functions useful. 
 
Note that throughout the problem set you can assume that the rectanguloids in the scene 
are axial aligned, and do not intersect each other.  The car will not usually be axial 
aligned, however.  You can receive extra credit for handling more general rectanguloids 
in the scene. 
 
By the way, it is certainly possible that my code has bugs.  If it does, this does not excuse 
you if you have the same bugs.  If you have any doubts about the program’s desired 
performance, please ask. 
 

1. 5 points.  Fix up the scene so that it looks nice, with a few rectanguloids scattered 
here and there.  Make at least one rectanguloid tall, so that you can tip it over (see 
part 5).  Make the rectanguloids displayed with solid sides, instead of wire frames 
(look at the command glPolygonMode).   

 
2. 15 points.  Add to the code so that the viewing position cannot go inside any of 

the rectanguloids.  If the viewing position attempts to go inside a rectanguloid, it 
will remain outside, unmoving instead.   When the viewer tries to enter the 
rectanguloid, the rectanguloid will slowly turn yellow.  Note that if you do part 4, 
this part need not be present in your final code.  However, doing this problem is a 
good warm up for part 4, and you can get credit for this part even if you are 
unable to get 4 working.  

 
3. 15 points. Now, instead of considering the viewer as occupying a single point at 

the viewing position, imagine that you are driving a rectanguloid car.  This 
rectanguloid is aligned with the viewing direction.  So when you turn, the car 
turns.  The car is always pointing in the same direction in which you are viewing, 



so the direction you move is the direction you look in.  Display the outline of the 
car as a wire-frame (see glPolygonMode).  You can make the car any size you 
want, but part of the wireframe of it should be visible as you move around (as in 
the executable). 

 
4. 20 points. Now, instead of the viewing position not being allowed to intersect the 

rectanguloids, the whole car is not allowed to intersect a rectanguloid.  If any 
point in the car intersects any point in the rectanguloid, you should stop moving 
(as in (2), the rectanguloid will slowly turn yellow if you keep trying to intersect 
it). 

 
5. 15 points.  If a rectanguloid is tall and thin it can be tipped over.  Specifically, if 

its height is more than twice as large as its length or width, it is tippable.  When 
you hit the rectanguloid on any side, it will tip over in the opposite direction.  
That means the edge that is on the ground plane, opposite to where you hit it, will 
be fixed, and the rectanguloid will slowly rotate 90 degrees about this edge.      

 
a. You should have the rectanguloid lie on its side once you are done.  Future 

collisions with the car should be based on its new position.  However, you 
will get partial credit if the rectanguloid goes back to its old position after 
it falls. 

b. You do not need to worry about what happens if the rectanguloid 
intersects other objects as it falls.   

c. You do not need to worry about the falling rectanguloid intersecting the 
car, until after it is done falling.  

 
6. Extra Credit, up to 20 points:  Build a game out of this.  You could make a 

game just using these tools.  For example, you could create a track and time your 
speed around it, perhaps subtracting points for hitting obstacles.  Or you could 
create a maze that contains something you need to find. 

 
You will receive more credit if you add more features to the system to use in your 
game.  For example: 
 
• When the car hits a rectanguloid, you can push the rectanguloid into a new 

position.  This might be used to reveal hidden corridors.  Special credit if the 
rectanguloids move in a physically realistic way, and/or are allowed to 
become non-axial. 

• Allow one falling rectanguloid to tip over another when it hits it.  Make a set 
of falling dominoes. 

• Add moving objects to the scene.  You might chase them in your game, or 
have them chase you. 

• Make up your own features! 
 

If you do this part, please include a brief written description documenting 
your game, so that we can fully appreciate it. 

 
 



 
 
 
Pencil and Paper Exercises  
 
Each problem is worth only a small number of points.  However, these are well worth 
doing because they will provide good practice for the midterm. 
 

1. Perspective (2 points each) 
a. Suppose we have a perspective camera with a focal point at the origin.  

The image plane is the z=1 plane.  We are looking at a point in the world 
located at (7,4,3).  Where does this point appear in the image?  (That is, 
give the 3D coordinates of a point in the image plane where this point will 
appear). 

b. Suppose the image plane were z=2.  Now where would the point appear in 
the image? 

c. Suppose we are looking at the world with a perspective camera in which 
the focal point is not at the origin.  The image plane is the z=1 plane.  We 
are looking at a point in the world with coordinates (7,4,3).  This appears 
in the image at (9,2,1).  Give a possible location for the focal point. 

d. For problem (c), give equation(s) that describe all possible locations of the 
focal point. 

e. Suppose we have a perspective camera, with a focal point at the origin, 
and an image plane at the z=1 plane.  We are looking at lines on the floor, 
which is the y = -5 plane.  Give equations that describe the set of lines that 
have a vanishing point at (5,0,1). 

 
2. Intersection (1 point each):  Consider a line segment with end points at (8,3) and 

(20,9).   
a. Write an equation for the line that contains this line segment. 
b. Give a unit vector, n, that is perpendicular to this line segment. 
c. What is the inner product of n with (8,3)? 
d. Consider the line segment with end points (2,2) and (14,16).  What is the 

inner product of n with these end points? 
e. Consider two triangles.  The first has vertices at (0,0), (5,0) and (0,5) and 

the second has vertices at (4,2), (8, 2), (4,5).  Do these triangles intersect? 
f. Suppose we put axial rectangles around the triangles in (e).  Do these 

intersect? 
 

3. Projection (4 points) Suppose we use the command glOrtho(3,7,2,4,1,2).  Give a 
4x4 matrix that will transform points in the world so that any point that is visible 
will be transformed so that it is in the cube -1<=x<=1, -1<=y<=1, -1<=z<=1.  
After the transformation, any point in the cube should correspond to a point that 
was visible. 

 
 
 



4. Visibility (2 ½ points each) Consider a triangle with vertices: (3,2,4), (5,8,6), and 
(6,3,5).   

a. Consider a point with x coordinate 4 on the line segment from (3,2,4) to 
(5,8,6).  What is its y coordinate? 

b. What is the z coordinate of the point in the triangle with x=4 and y=4? 
 

c. Consider the 2D scene: 

 
Here is a possible BSP tree for this scene: 

 

 
Explain how this BSP tree can be used to choose the order in which we 
will render these line segments, from the point of view of the viewer 
shown in the figure.  Give the order in which they will be rendered. 

 
       d.  Construct a BSP tree for this scene in which 2 is at the root. 

 
 

4 

6 

7 

5 

1 

2 

3 

Viewer 

1 

2 5 

3 4 6 7 


