
Problem Set 4
CMSC 427

Distributed April 12, 2007
Due: Thursday, April 26 2006

Programming

 For this assignment you will write a simple ray tracer. It will be written in C++
without using OpenGL. For full credit, it must support the following features:

• A camera with arbitrary position, direction, and orientation
• Arbitrary image resolution
• Triangle and sphere primitives
• Ambient, directional, and point lights
• Arbitrary materials defined by a color, Phong exponent, and specular fraction
• Diffuse and specular shading, and mirror reflections
• Cast shadows

Note that the BMPImage library sometimes has problems with weird image resolutions,
so you should stick with either powers of 2 (e.g. 64x64, 128x128, ...) or standard
resolutions (e.g. 640x480, 1024x768, ...).

 The program must read from the command line the name of an input file
describing the scene to be ray traced, the name of the output bmp file, and the image
resolution. We have provided skeleton code that parses the command line and the scene
input file. We have also provided sample input files, and the output files that the ray
tracer should produce when using these as input.

 The input file format consists of a series of commands, each followed by a list of
parameters. Blank lines and lines beginning with # are ignored. The supported
commands are:

Format Example Description

camera
eye x,y,z
look at point x,y,z
up vector x,y,z
y field of view degrees

camera
0.0 0.0 0.0
0.0 0.0 -100.0
0.0 1.0 0.0
30.0

Specifies the position, orientation, and
direction of the camera.

The image is defined to be 1 unit away from
the camera in the direction the camera is
facing.

"eye" is the camera's position

"look at point" is a point in the scene the
camera is pointing at

"up vector" gives the camera's orientation

"y field of view degrees" is the angle from the
top to the bottom of the image in the camera's
up and down directions

ambientLight
intensity r, g, b

ambientLight
0.1 0.1 0.1

Specifies an amount of light that is striking all
objects in the scene. Each scene has at most
one ambient light.

directionLight
intensity r, g, b
direction x, y, z

directionLight
0.3 0.0 0.0
1.0 1.0 1.0

Specifies a light coming into the scene from
infinitely far away from the given direction
("direction" is the direction TO the light from
any point in the scene). Direction lights can
be shadowed.

pointLight
intensity r,g,b
position x,y,z

pointLight
0.0 300.0 0.0
30.0 10.0 -50.0

Specifies a point light source located at the
given position. Since the light intensity
attenuates with distance, you may want to
make the initial intensity much larger than 1.
Point lights can be shadowed.

material
color r,g,b
Phong cosine exponent
specular fraction

material
1.0 1.0 1.0
50.0
0.0

Specifies the material properties for all
triangles and spheres declared after this point
in the file (until the next material command).

"specular fraction" is the fraction of the final
color that comes from the Phong specular
highlight and the mirror reflection. The
remaining fraction of the final color comes
from the diffuse Lambertian shading.

triangle
vertex1 x,y,z
vertex2 x,y,z
vertex3 x,y,z

triangle
5.0 0.0 -50.0
15.0 0.0 -50.0
15.0 10.0 -50.0

Specifies a triangle primitive with the given 3
vertices.

sphere
center x,y,z
radius

sphere
10.0 5.0 -47.5
1.0

Specifies a sphere primitive with the given
center and radius.

Points will be assigned as follows:

• 40 Points- Render spheres and triangles with ray tracing under ambient light. For this

you will need to shoot rays from the eye position through the pixels in the image and
into the scene, and test for intersection against the primitives. The pixel color will be
determined by finding the closest intersection, and multiplying that primitive's
material color by the ambient light.

• 30 Points- Add point and directional light sources with specular highlights and diffuse
shading. Now, once you've found the closest ray intersection, you will need to
compute a diffuse and a specular contribution to the final color from each light. The
diffuse light contribution involves the angle between the surface normal and the light,
while the specular light contribution involves the angle between the viewer and the
light reflection, as well as the Phong exponent. The material's "specular fraction" tells
what fraction of the final color should come from the specular light. The remaining
fraction should come from the diffuse light, with the ambient light being added on top
of these. Remember that point light intensity decreases proportional to the square of
the distance from the light.

• 20 Points- Add cast shadows. To implement this, when computing the diffuse and
specular contributions from each light, you will need to first cast a ray in the direction
of the light from the intersection point on the surface. If the ray intersects another
object that is closer than the light, the point is shadowed from the light, and the light
should not affect it.

• 10 Points- Add mirror reflections. At each intersection point, recursively cast a ray
from the point in the direction to the viewer reflected across the surface normal. This
ray should not be cast if the recursion depth is greater than 5, or the surface material's
"specular fraction" is 0. The light returned by this ray cast should be added to the
specular light for this point.

Extra credit:

• Add anti-aliasing with super-sampling. Instead of casting one ray through each pixel

in the image, cast several through different points in each pixel, and average the
resulting colors.

• Add refractions. Allow the index of refraction of materials to be specified in the scene
file (your program should still be able to read scene files in the original format). You
can assume the index of refraction of air is 1. When a ray intersects a surface, in
addition to recursively casting a reflected ray, recursively cast a refracted ray in the
direction given by Snell's law. The light returned by this ray should be added to the
diffuse, specular, and ambient light.

Notes:

One thing you need to be careful of when writing this program is that, due to roundoff
error, the intersection distance reported by your intersect routines will be slightly
incorrect. This can cause a problem if you shoot another ray from the intersection point,
since it might end up intersecting the same surface it's supposed to be coming from. To
prevent this, you should define some small constant epsilon (say, 0.01), and assume that
any intersections at a distance along the ray less than this are not true intersections and
ignore them.

The images produced by your program do not have to be pixel-for-pixel accurate to the
example image, although if there's significant deviation you may be doing something
wrong. It's also not impossible that there are bugs in the demo program, so let us know if
your program is producing different output than the demo that you really think is correct.

Pencil and Paper exercises (5 points each)

1. Suppose we have a viewer at (0,0,0) looking at a surface located at (1,2,10) and
there is a point source of light located at (10,6,5). If the surface reflects light with
Phong reflectance, what surface normal would it need to have to produce the
brightest possible specularity to the viewer?

2. Suppose the ground is the y=0 plane. There is an infinite wall whose base is on
this plane, along the line described by the equations y=0, and x=0. The wall has a
height of 10 feet, so that its top is described by the line y=10, x=0. There is a
directional source of light, with the direction (cos π/6, sin π/6, 0).

a. What is the length of the shadow cast by the wall? We want the distance
from the edge of the shadow to the wall (that is, don’t say the shadow has
infinite length).

b. Suppose the light source is an infinitely distant fluorescent tube. The top
of the tube is in the direction (cos (π/6 + π/20), sin (π/6 + π/20), 0). The
bottom of the tube is in the direction (cos (π/6 - π/20), sin (π/6 - π/20), 0).
There is an equal amount of light coming from every direction between
these two. This produces soft shadows when the tube is partially visible
from a point. Suppose a point on the ground that is not in shadow has an
intensity of 1. Give the intensity of an arbitrary point on the ground (x, 0,
z).

3. Suppose there is a white sphere centered at the point (0,0,B) with unit radius,
illuminated by a directional light source from the direction (1,0,0). B is some
arbitrary, very big number. We are making B big only so that you can assume
that all vectors from the viewer to any point on the sphere are in the same
direction. We view the sphere from the position (0,0,0).

a. Suppose the sphere is Lambertian. If the point on the sphere (1,0,B)
appears in an image with intensity 1, what would be the intensity of the
point (cos(π/20), 0, B – sin(π/20))?

b. Suppose the sphere reflects light according to the Phong model. If the
point on the sphere (cos(π/4),0,B-sin(π/4)) appears in an image with
intensity 1, and a point on the sphere at (cos(5π/16),0,B-sin(5π/16))
appears with intensity .4531, what will be the intensity of a point at
(cos(9π/32),0,B-sin(9π/32))? If we were using Gouraud shading, and
interpolated the value of the intensity at (cos(9π/32),0,B-sin(9π/32) from
the intensities at (cos(5π/16),0,B-sin(5π/16)) and (cos(π/4),0,B-sin(π/4))
how much error would be caused by this interpolation?

c. Challenge Problem: Suppose we use Gouraud shading for the sphere, and
the material has a Phong reflectance of cos20 (θ). We have vertices around
the equator of the sphere (in the y = 0 plane) every 2 degrees. What is the
maximum amount of error that can occur? What is the maximum amount
of error that can occur with Lambertian reflectance? If you find it hard to
solve this problem exactly, you might want to make some reasonable
approximation in the solution.

4. Instead of a point source of light, let’s imagine a continuous light. For example,
consider a line segment of light stretching from (-1,0,0) to (1,0,0). This is a tube
that emits a constant amount of light all along its length. The strength of this light
still falls off with distance, d, at a rate of 1/d2 as it does for any physically real
light.

a. Consider a surface located at the position (x,0,0), for x>1. Determine the
amount of light that reaches this point from our tube of light.

b. Explain why this lighting cannot be produced by a single point source of
light whose strength drops at a rate of 1/d2. Show that it can be produced
by a non-physically real point source of light whose strength attenuates at

a rate of:
2

210

1

dadaa ++
. How would you choose a0, a1, a2, to model this

light?

